1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-06-21 06:40:08 +02:00
2015-04-07 22:10:17 -05:00

517 lines
16 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "amosc.h"
void amosc_free(snd_susp_type a_susp);
typedef struct amosc_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type amod;
long amod_cnt;
sample_block_values_type amod_ptr;
/* support for interpolation of amod */
sample_type amod_x1_sample;
double amod_pHaSe;
double amod_pHaSe_iNcR;
/* support for ramp between samples of amod */
double output_per_amod;
long amod_n;
double ph_incr;
table_type the_table;
sample_type *table_ptr;
double table_len;
double phase;
} amosc_susp_node, *amosc_susp_type;
void amosc_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double ph_incr_reg;
register sample_type * table_ptr_reg;
register double table_len_reg;
register double phase_reg;
register sample_type amod_scale_reg = susp->amod->scale;
register sample_block_values_type amod_ptr_reg;
falloc_sample_block(out, "amosc_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the amod input sample block: */
susp_check_term_log_samples(amod, amod_ptr, amod_cnt);
togo = min(togo, susp->amod_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
ph_incr_reg = susp->ph_incr;
table_ptr_reg = susp->table_ptr;
table_len_reg = susp->table_len;
phase_reg = susp->phase;
amod_ptr_reg = susp->amod_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
{
long table_index = (long) phase_reg;
double x1 = (double) (table_ptr_reg[table_index]);
*out_ptr_reg++ = (sample_type) ((x1 + (phase_reg - table_index) *
(table_ptr_reg[table_index + 1] - x1)) * (amod_scale_reg * *amod_ptr_reg++));
phase_reg += ph_incr_reg;
while (phase_reg > table_len_reg) phase_reg -= table_len_reg;
};
} while (--n); /* inner loop */
susp->phase = phase_reg;
/* using amod_ptr_reg is a bad idea on RS/6000: */
susp->amod_ptr += togo;
out_ptr += togo;
susp_took(amod_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* amosc_s_fetch */
void amosc_i_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type amod_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double ph_incr_reg;
register sample_type * table_ptr_reg;
register double table_len_reg;
register double phase_reg;
register double amod_pHaSe_iNcR_rEg = susp->amod_pHaSe_iNcR;
register double amod_pHaSe_ReG;
register sample_type amod_x1_sample_reg;
falloc_sample_block(out, "amosc_i_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_log_samples(amod, amod_ptr, amod_cnt);
susp->amod_x1_sample = susp_fetch_sample(amod, amod_ptr, amod_cnt);
}
susp_check_term_log_samples(amod, amod_ptr, amod_cnt);
amod_x2_sample = susp_current_sample(amod, amod_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
ph_incr_reg = susp->ph_incr;
table_ptr_reg = susp->table_ptr;
table_len_reg = susp->table_len;
phase_reg = susp->phase;
amod_pHaSe_ReG = susp->amod_pHaSe;
amod_x1_sample_reg = susp->amod_x1_sample;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
if (amod_pHaSe_ReG >= 1.0) {
amod_x1_sample_reg = amod_x2_sample;
/* pick up next sample as amod_x2_sample: */
susp->amod_ptr++;
susp_took(amod_cnt, 1);
amod_pHaSe_ReG -= 1.0;
susp_check_term_log_samples_break(amod, amod_ptr, amod_cnt, amod_x2_sample);
}
{
long table_index = (long) phase_reg;
double x1 = (double) (table_ptr_reg[table_index]);
*out_ptr_reg++ = (sample_type) ((x1 + (phase_reg - table_index) *
(table_ptr_reg[table_index + 1] - x1)) *
(amod_x1_sample_reg * (1 - amod_pHaSe_ReG) + amod_x2_sample * amod_pHaSe_ReG));
phase_reg += ph_incr_reg;
while (phase_reg > table_len_reg) phase_reg -= table_len_reg;
};
amod_pHaSe_ReG += amod_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->phase = phase_reg;
susp->amod_pHaSe = amod_pHaSe_ReG;
susp->amod_x1_sample = amod_x1_sample_reg;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* amosc_i_fetch */
void amosc_r_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type amod_DeLtA;
sample_type amod_val;
sample_type amod_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double ph_incr_reg;
register sample_type * table_ptr_reg;
register double table_len_reg;
register double phase_reg;
falloc_sample_block(out, "amosc_r_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->amod_pHaSe = 1.0;
}
susp_check_term_log_samples(amod, amod_ptr, amod_cnt);
amod_x2_sample = susp_current_sample(amod, amod_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* grab next amod_x2_sample when phase goes past 1.0; */
/* we use amod_n (computed below) to avoid roundoff errors: */
if (susp->amod_n <= 0) {
susp->amod_x1_sample = amod_x2_sample;
susp->amod_ptr++;
susp_took(amod_cnt, 1);
susp->amod_pHaSe -= 1.0;
susp_check_term_log_samples(amod, amod_ptr, amod_cnt);
amod_x2_sample = susp_current_sample(amod, amod_ptr);
/* amod_n gets number of samples before phase exceeds 1.0: */
susp->amod_n = (long) ((1.0 - susp->amod_pHaSe) *
susp->output_per_amod);
}
togo = min(togo, susp->amod_n);
amod_DeLtA = (sample_type) ((amod_x2_sample - susp->amod_x1_sample) * susp->amod_pHaSe_iNcR);
amod_val = (sample_type) (susp->amod_x1_sample * (1.0 - susp->amod_pHaSe) +
amod_x2_sample * susp->amod_pHaSe);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
ph_incr_reg = susp->ph_incr;
table_ptr_reg = susp->table_ptr;
table_len_reg = susp->table_len;
phase_reg = susp->phase;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
{
long table_index = (long) phase_reg;
double x1 = (double) (table_ptr_reg[table_index]);
*out_ptr_reg++ = (sample_type) ((x1 + (phase_reg - table_index) *
(table_ptr_reg[table_index + 1] - x1)) * amod_val);
phase_reg += ph_incr_reg;
while (phase_reg > table_len_reg) phase_reg -= table_len_reg;
};
amod_val += amod_DeLtA;
} while (--n); /* inner loop */
susp->phase = phase_reg;
out_ptr += togo;
susp->amod_pHaSe += togo * susp->amod_pHaSe_iNcR;
susp->amod_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* amosc_r_fetch */
void amosc_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from amod up to final_time for this block of zeros */
while ((round((final_time - susp->amod->t0) * susp->amod->sr)) >=
susp->amod->current)
susp_get_samples(amod, amod_ptr, amod_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->amod->t0) * susp->amod->sr -
(susp->amod->current - susp->amod_cnt));
susp->amod_ptr += n;
susp_took(amod_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(a_susp, snd_list);
}
void amosc_mark(snd_susp_type a_susp)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
sound_xlmark(susp->amod);
}
void amosc_free(snd_susp_type a_susp)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
table_unref(susp->the_table);
sound_unref(susp->amod);
ffree_generic(susp, sizeof(amosc_susp_node), "amosc_free");
}
void amosc_print_tree(snd_susp_type a_susp, int n)
{
amosc_susp_type susp = (amosc_susp_type) a_susp;
indent(n);
stdputstr("amod:");
sound_print_tree_1(susp->amod, n);
}
sound_type snd_make_amosc(sound_type input, double step, rate_type sr, double hz, time_type t0, sound_type amod, double phase)
{
register amosc_susp_type susp;
/* sr specified as input parameter */
/* t0 specified as input parameter */
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, amosc_susp_node, "snd_make_amosc");
susp->ph_incr = 0;
susp->the_table = sound_to_table(input);
susp->table_ptr = susp->the_table->samples;
susp->table_len = susp->the_table->length;
susp->phase = compute_phase(phase, step, (long) susp->table_len,
input->sr, sr, hz, &susp->ph_incr);
/* make sure no sample rate is too high */
if (amod->sr > sr) {
sound_unref(amod);
snd_badsr();
}
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(amod, sr);
switch (interp_desc) {
case INTERP_n: /* handled below */
case INTERP_s: susp->susp.fetch = amosc_s_fetch; break;
case INTERP_i: susp->susp.fetch = amosc_i_fetch; break;
case INTERP_r: susp->susp.fetch = amosc_r_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < amod->t0) sound_prepend_zeros(amod, t0);
/* minimum start time over all inputs: */
t0_min = min(amod->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = amosc_toss_fetch;
}
/* initialize susp state */
susp->susp.free = amosc_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = amosc_mark;
susp->susp.print_tree = amosc_print_tree;
susp->susp.name = "amosc";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(amod);
susp->started = false;
susp->susp.current = 0;
susp->amod = amod;
susp->amod_cnt = 0;
susp->amod_pHaSe = 0.0;
susp->amod_pHaSe_iNcR = amod->sr / sr;
susp->amod_n = 0;
susp->output_per_amod = sr / amod->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_amosc(sound_type input, double step, rate_type sr, double hz, time_type t0, sound_type amod, double phase)
{
sound_type amod_copy = sound_copy(amod);
return snd_make_amosc(input, step, sr, hz, t0, amod_copy, phase);
}