1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-05 14:18:53 +02:00
2010-01-24 09:19:39 +00:00

449 lines
13 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "upsample.h"
void up_free();
typedef struct up_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type input;
long input_cnt;
sample_block_values_type input_ptr;
/* support for interpolation of input */
sample_type input_x1_sample;
double input_pHaSe;
double input_pHaSe_iNcR;
/* support for ramp between samples of input */
double output_per_input;
long input_n;
} up_susp_node, *up_susp_type;
void up_n_fetch(register up_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "up_n_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_log_samples(input, input_ptr, input_cnt);
togo = min(togo, susp->input_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = (sample_type) *input_ptr_reg++;
} while (--n); /* inner loop */
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* up_n_fetch */
void up_i_fetch(register up_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
sample_type input_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double input_pHaSe_iNcR_rEg = susp->input_pHaSe_iNcR;
register double input_pHaSe_ReG;
register sample_type input_x1_sample_reg;
falloc_sample_block(out, "up_i_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_log_samples(input, input_ptr, input_cnt);
susp->input_x1_sample = susp_fetch_sample(input, input_ptr, input_cnt);
}
susp_check_term_log_samples(input, input_ptr, input_cnt);
input_x2_sample = susp_current_sample(input, input_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
input_pHaSe_ReG = susp->input_pHaSe;
input_x1_sample_reg = susp->input_x1_sample;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
if (input_pHaSe_ReG >= 1.0) {
input_x1_sample_reg = input_x2_sample;
/* pick up next sample as input_x2_sample: */
susp->input_ptr++;
susp_took(input_cnt, 1);
input_pHaSe_ReG -= 1.0;
susp_check_term_log_samples_break(input, input_ptr, input_cnt, input_x2_sample);
}
*out_ptr_reg++ = (sample_type)
(input_x1_sample_reg * (1 - input_pHaSe_ReG) + input_x2_sample * input_pHaSe_ReG);
input_pHaSe_ReG += input_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->input_pHaSe = input_pHaSe_ReG;
susp->input_x1_sample = input_x1_sample_reg;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* up_i_fetch */
void up_r_fetch(register up_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
sample_type input_DeLtA;
sample_type input_val;
sample_type input_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
falloc_sample_block(out, "up_r_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->input_pHaSe = 1.0;
}
susp_check_term_log_samples(input, input_ptr, input_cnt);
input_x2_sample = susp_current_sample(input, input_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* grab next input_x2_sample when phase goes past 1.0; */
/* we use input_n (computed below) to avoid roundoff errors: */
if (susp->input_n <= 0) {
susp->input_x1_sample = input_x2_sample;
susp->input_ptr++;
susp_took(input_cnt, 1);
susp->input_pHaSe -= 1.0;
susp_check_term_log_samples(input, input_ptr, input_cnt);
input_x2_sample = susp_current_sample(input, input_ptr);
/* input_n gets number of samples before phase exceeds 1.0: */
susp->input_n = (long) ((1.0 - susp->input_pHaSe) *
susp->output_per_input);
}
togo = min(togo, susp->input_n);
input_DeLtA = (sample_type) ((input_x2_sample - susp->input_x1_sample) * susp->input_pHaSe_iNcR);
input_val = (sample_type) (susp->input_x1_sample * (1.0 - susp->input_pHaSe) +
input_x2_sample * susp->input_pHaSe);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = (sample_type) input_val;
input_val += input_DeLtA;
} while (--n); /* inner loop */
out_ptr += togo;
susp->input_pHaSe += togo * susp->input_pHaSe_iNcR;
susp->input_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* up_r_fetch */
void up_toss_fetch(susp, snd_list)
register up_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from input up to final_time for this block of zeros */
while ((round((final_time - susp->input->t0) * susp->input->sr)) >=
susp->input->current)
susp_get_samples(input, input_ptr, input_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->input->t0) * susp->input->sr -
(susp->input->current - susp->input_cnt));
susp->input_ptr += n;
susp_took(input_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void up_mark(up_susp_type susp)
{
sound_xlmark(susp->input);
}
void up_free(up_susp_type susp)
{
sound_unref(susp->input);
ffree_generic(susp, sizeof(up_susp_node), "up_free");
}
void up_print_tree(up_susp_type susp, int n)
{
indent(n);
stdputstr("input:");
sound_print_tree_1(susp->input, n);
}
sound_type snd_make_up(rate_type sr, sound_type input)
{
register up_susp_type susp;
/* sr specified as input parameter */
time_type t0 = input->t0;
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
/* combine scale factors of linear inputs (INPUT) */
scale_factor *= input->scale;
input->scale = 1.0F;
/* try to push scale_factor back to a low sr input */
if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; }
if (input->sr > sr) {
sound_unref(input);
xlfail("snd-up: output sample rate must be higher than input");
}
falloc_generic(susp, up_susp_node, "snd_make_up");
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(input, sr);
switch (interp_desc) {
case INTERP_n: susp->susp.fetch = up_n_fetch; break;
case INTERP_i: susp->susp.fetch = up_i_fetch; break;
case INTERP_r: susp->susp.fetch = up_r_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < input->t0) sound_prepend_zeros(input, t0);
/* minimum start time over all inputs: */
t0_min = min(input->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = up_toss_fetch;
}
/* initialize susp state */
susp->susp.free = up_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = up_mark;
susp->susp.print_tree = up_print_tree;
susp->susp.name = "up";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input);
susp->started = false;
susp->susp.current = 0;
susp->input = input;
susp->input_cnt = 0;
susp->input_pHaSe = 0.0;
susp->input_pHaSe_iNcR = input->sr / sr;
susp->input_n = 0;
susp->output_per_input = sr / input->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_up(rate_type sr, sound_type input)
{
sound_type input_copy = sound_copy(input);
return snd_make_up(sr, input_copy);
}