1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-05 14:18:53 +02:00
2010-01-24 09:19:39 +00:00

214 lines
5.7 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "tone.h"
void tone_free();
typedef struct tone_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type input;
long input_cnt;
sample_block_values_type input_ptr;
double c2;
double c1;
double prev;
} tone_susp_node, *tone_susp_type;
void tone_n_fetch(register tone_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double c2_reg;
register double c1_reg;
register double prev_reg;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "tone_n_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_log_samples(input, input_ptr, input_cnt);
togo = min(togo, susp->input_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
c2_reg = susp->c2;
c1_reg = susp->c1;
prev_reg = susp->prev;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = (sample_type) (prev_reg = c1_reg * *input_ptr_reg++ + c2_reg * prev_reg);
} while (--n); /* inner loop */
susp->prev = prev_reg;
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tone_n_fetch */
void tone_toss_fetch(susp, snd_list)
register tone_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from input up to final_time for this block of zeros */
while ((round((final_time - susp->input->t0) * susp->input->sr)) >=
susp->input->current)
susp_get_samples(input, input_ptr, input_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->input->t0) * susp->input->sr -
(susp->input->current - susp->input_cnt));
susp->input_ptr += n;
susp_took(input_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void tone_mark(tone_susp_type susp)
{
sound_xlmark(susp->input);
}
void tone_free(tone_susp_type susp)
{
sound_unref(susp->input);
ffree_generic(susp, sizeof(tone_susp_node), "tone_free");
}
void tone_print_tree(tone_susp_type susp, int n)
{
indent(n);
stdputstr("input:");
sound_print_tree_1(susp->input, n);
}
sound_type snd_make_tone(sound_type input, double hz)
{
register tone_susp_type susp;
double b;
rate_type sr = input->sr;
time_type t0 = input->t0;
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, tone_susp_node, "snd_make_tone");
b = 2.0 - cos(hz * PI2 / input->sr);
susp->c2 = b - sqrt((b * b) - 1.0);
susp->c1 = (1.0 - susp->c2) * input->scale;
susp->prev = 0.0;
susp->susp.fetch = tone_n_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < input->t0) sound_prepend_zeros(input, t0);
/* minimum start time over all inputs: */
t0_min = min(input->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = tone_toss_fetch;
}
/* initialize susp state */
susp->susp.free = tone_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = tone_mark;
susp->susp.print_tree = tone_print_tree;
susp->susp.name = "tone";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input);
susp->susp.current = 0;
susp->input = input;
susp->input_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_tone(sound_type input, double hz)
{
sound_type input_copy = sound_copy(input);
return snd_make_tone(input_copy, hz);
}