1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-05 14:18:53 +02:00
2010-01-24 09:19:39 +00:00

589 lines
18 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "resonvc.h"
void resonvc_free();
typedef struct resonvc_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type s1;
long s1_cnt;
sample_block_values_type s1_ptr;
sound_type hz;
long hz_cnt;
sample_block_values_type hz_ptr;
/* support for interpolation of hz */
sample_type hz_x1_sample;
double hz_pHaSe;
double hz_pHaSe_iNcR;
/* support for ramp between samples of hz */
double output_per_hz;
long hz_n;
double scale1;
double c3co;
double c3p1;
double c3t4;
double omc3;
double c2;
double c1;
int normalization;
double y1;
double y2;
} resonvc_susp_node, *resonvc_susp_type;
void resonvc_ns_fetch(register resonvc_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double scale1_reg;
register double c3co_reg;
register double c3p1_reg;
register double c3t4_reg;
register double omc3_reg;
register double c2_reg;
register double c1_reg;
register int normalization_reg;
register double y1_reg;
register double y2_reg;
register sample_type hz_scale_reg = susp->hz->scale;
register sample_block_values_type hz_ptr_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "resonvc_ns_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past the hz input sample block: */
susp_check_term_samples(hz, hz_ptr, hz_cnt);
togo = min(togo, susp->hz_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
scale1_reg = susp->scale1;
c3co_reg = susp->c3co;
c3p1_reg = susp->c3p1;
c3t4_reg = susp->c3t4;
omc3_reg = susp->omc3;
c2_reg = susp->c2;
c1_reg = susp->c1;
normalization_reg = susp->normalization;
y1_reg = susp->y1;
y2_reg = susp->y2;
hz_ptr_reg = susp->hz_ptr;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
c2_reg = c3t4_reg * cos((hz_scale_reg * *hz_ptr_reg++)) / c3p1_reg;
c1_reg = (normalization_reg == 0 ? scale1_reg :
(normalization_reg == 1 ? omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) :
sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg)) * scale1_reg;
{ double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg;
*out_ptr_reg++ = (sample_type) y0;
y2_reg = y1_reg; y1_reg = y0; };
} while (--n); /* inner loop */
susp->y1 = y1_reg;
susp->y2 = y2_reg;
/* using hz_ptr_reg is a bad idea on RS/6000: */
susp->hz_ptr += togo;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp_took(hz_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* resonvc_ns_fetch */
void resonvc_ni_fetch(register resonvc_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double scale1_reg;
register double c3co_reg;
register double c3p1_reg;
register double c3t4_reg;
register double omc3_reg;
register double c2_reg;
register double c1_reg;
register int normalization_reg;
register double y1_reg;
register double y2_reg;
register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR;
register double hz_pHaSe_ReG;
register sample_type hz_x1_sample_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "resonvc_ni_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_samples(hz, hz_ptr, hz_cnt);
susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);
susp->c2 = susp->c3t4 * cos(susp->hz_x1_sample) / susp->c3p1;
susp->c1 = (susp->normalization == 0 ? susp->scale1 :
(susp->normalization == 1 ? susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) :
sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1)) * susp->scale1;
}
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
scale1_reg = susp->scale1;
c3co_reg = susp->c3co;
c3p1_reg = susp->c3p1;
c3t4_reg = susp->c3t4;
omc3_reg = susp->omc3;
c2_reg = susp->c2;
c1_reg = susp->c1;
normalization_reg = susp->normalization;
y1_reg = susp->y1;
y2_reg = susp->y2;
hz_pHaSe_ReG = susp->hz_pHaSe;
hz_x1_sample_reg = susp->hz_x1_sample;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
if (hz_pHaSe_ReG >= 1.0) {
/* fixup-depends hz */
/* pick up next sample as hz_x1_sample: */
susp->hz_ptr++;
susp_took(hz_cnt, 1);
hz_pHaSe_ReG -= 1.0;
susp_check_term_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg);
hz_x1_sample_reg = susp_current_sample(hz, hz_ptr);
c2_reg = susp->c2 = c3t4_reg * cos(hz_x1_sample_reg) / c3p1_reg;
c1_reg = susp->c1 = (normalization_reg == 0 ? scale1_reg :
(normalization_reg == 1 ? omc3_reg * sqrt(1.0 - c2_reg * c2_reg / c3t4_reg) :
sqrt(c3p1_reg * c3p1_reg - c2_reg * c2_reg) * omc3_reg / c3p1_reg)) * scale1_reg;
}
{ double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg;
*out_ptr_reg++ = (sample_type) y0;
y2_reg = y1_reg; y1_reg = y0; };
hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->y1 = y1_reg;
susp->y2 = y2_reg;
susp->hz_pHaSe = hz_pHaSe_ReG;
susp->hz_x1_sample = hz_x1_sample_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* resonvc_ni_fetch */
void resonvc_nr_fetch(register resonvc_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
sample_type hz_val;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double scale1_reg;
register double c3co_reg;
register double c3p1_reg;
register double c3t4_reg;
register double omc3_reg;
register double c2_reg;
register double c1_reg;
register int normalization_reg;
register double y1_reg;
register double y2_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "resonvc_nr_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->hz_pHaSe = 1.0;
}
susp_check_term_samples(hz, hz_ptr, hz_cnt);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* grab next hz_x1_sample when phase goes past 1.0; */
/* use hz_n (computed below) to avoid roundoff errors: */
if (susp->hz_n <= 0) {
susp_check_term_samples(hz, hz_ptr, hz_cnt);
susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);
susp->hz_pHaSe -= 1.0;
/* hz_n gets number of samples before phase exceeds 1.0: */
susp->hz_n = (long) ((1.0 - susp->hz_pHaSe) *
susp->output_per_hz);
susp->c2 = susp->c3t4 * cos(susp->hz_x1_sample) / susp->c3p1;
susp->c1 = (susp->normalization == 0 ? susp->scale1 :
(susp->normalization == 1 ? susp->omc3 * sqrt(1.0 - susp->c2 * susp->c2 / susp->c3t4) :
sqrt(susp->c3p1 * susp->c3p1 - susp->c2 * susp->c2) * susp->omc3 / susp->c3p1)) * susp->scale1;
}
togo = min(togo, susp->hz_n);
hz_val = susp->hz_x1_sample;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
scale1_reg = susp->scale1;
c3co_reg = susp->c3co;
c3p1_reg = susp->c3p1;
c3t4_reg = susp->c3t4;
omc3_reg = susp->omc3;
c2_reg = susp->c2;
c1_reg = susp->c1;
normalization_reg = susp->normalization;
y1_reg = susp->y1;
y2_reg = susp->y2;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
{ double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg;
*out_ptr_reg++ = (sample_type) y0;
y2_reg = y1_reg; y1_reg = y0; };
} while (--n); /* inner loop */
susp->y1 = y1_reg;
susp->y2 = y2_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp->hz_pHaSe += togo * susp->hz_pHaSe_iNcR;
susp->hz_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* resonvc_nr_fetch */
void resonvc_toss_fetch(susp, snd_list)
register resonvc_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from s1 up to final_time for this block of zeros */
while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >=
susp->s1->current)
susp_get_samples(s1, s1_ptr, s1_cnt);
/* fetch samples from hz up to final_time for this block of zeros */
while ((round((final_time - susp->hz->t0) * susp->hz->sr)) >=
susp->hz->current)
susp_get_samples(hz, hz_ptr, hz_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->s1->t0) * susp->s1->sr -
(susp->s1->current - susp->s1_cnt));
susp->s1_ptr += n;
susp_took(s1_cnt, n);
n = round((final_time - susp->hz->t0) * susp->hz->sr -
(susp->hz->current - susp->hz_cnt));
susp->hz_ptr += n;
susp_took(hz_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void resonvc_mark(resonvc_susp_type susp)
{
sound_xlmark(susp->s1);
sound_xlmark(susp->hz);
}
void resonvc_free(resonvc_susp_type susp)
{
sound_unref(susp->s1);
sound_unref(susp->hz);
ffree_generic(susp, sizeof(resonvc_susp_node), "resonvc_free");
}
void resonvc_print_tree(resonvc_susp_type susp, int n)
{
indent(n);
stdputstr("s1:");
sound_print_tree_1(susp->s1, n);
indent(n);
stdputstr("hz:");
sound_print_tree_1(susp->hz, n);
}
sound_type snd_make_resonvc(sound_type s1, sound_type hz, double bw, int normalization)
{
register resonvc_susp_type susp;
rate_type sr = s1->sr;
time_type t0 = max(s1->t0, hz->t0);
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, resonvc_susp_node, "snd_make_resonvc");
susp->scale1 = s1->scale;
susp->c3co = exp(bw * -PI2 / s1->sr);
susp->c3p1 = susp->c3co + 1.0;
susp->c3t4 = susp->c3co * 4.0;
susp->omc3 = 1.0 - susp->c3co;
susp->c2 = 0.0;
susp->c1 = 0.0;
susp->normalization = normalization;
susp->y1 = 0.0;
susp->y2 = 0.0;
hz->scale = (sample_type) (hz->scale * (PI2 / s1->sr));
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(s1, sr);
interp_desc = (interp_desc << 2) + interp_style(hz, sr);
switch (interp_desc) {
case INTERP_sn: /* handled below */
case INTERP_ss: /* handled below */
case INTERP_nn: /* handled below */
case INTERP_ns: susp->susp.fetch = resonvc_ns_fetch; break;
case INTERP_si: /* handled below */
case INTERP_ni: susp->susp.fetch = resonvc_ni_fetch; break;
case INTERP_sr: /* handled below */
case INTERP_nr: susp->susp.fetch = resonvc_nr_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s1->t0) sound_prepend_zeros(s1, t0);
if (t0 < hz->t0) sound_prepend_zeros(hz, t0);
/* minimum start time over all inputs: */
t0_min = min(s1->t0, min(hz->t0, t0));
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = resonvc_toss_fetch;
}
/* initialize susp state */
susp->susp.free = resonvc_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = resonvc_mark;
susp->susp.print_tree = resonvc_print_tree;
susp->susp.name = "resonvc";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1);
susp->started = false;
susp->susp.current = 0;
susp->s1 = s1;
susp->s1_cnt = 0;
susp->hz = hz;
susp->hz_cnt = 0;
susp->hz_pHaSe = 0.0;
susp->hz_pHaSe_iNcR = hz->sr / sr;
susp->hz_n = 0;
susp->output_per_hz = sr / hz->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_resonvc(sound_type s1, sound_type hz, double bw, int normalization)
{
sound_type s1_copy = sound_copy(s1);
sound_type hz_copy = sound_copy(hz);
return snd_make_resonvc(s1_copy, hz_copy, bw, normalization);
}