1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-05 14:18:53 +02:00
2010-01-24 09:19:39 +00:00

601 lines
18 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "resoncv.h"
void resoncv_free();
typedef struct resoncv_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type s1;
long s1_cnt;
sample_block_values_type s1_ptr;
sound_type bw;
long bw_cnt;
sample_block_values_type bw_ptr;
/* support for interpolation of bw */
sample_type bw_x1_sample;
double bw_pHaSe;
double bw_pHaSe_iNcR;
/* support for ramp between samples of bw */
double output_per_bw;
long bw_n;
double scale1;
double c3co;
double coshz;
double c2;
double c1;
int normalization;
double y1;
double y2;
} resoncv_susp_node, *resoncv_susp_type;
void resoncv_ns_fetch(register resoncv_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double scale1_reg;
register double c3co_reg;
register double coshz_reg;
register double c2_reg;
register double c1_reg;
register int normalization_reg;
register double y1_reg;
register double y2_reg;
register sample_type bw_scale_reg = susp->bw->scale;
register sample_block_values_type bw_ptr_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "resoncv_ns_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past the bw input sample block: */
susp_check_term_samples(bw, bw_ptr, bw_cnt);
togo = min(togo, susp->bw_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
scale1_reg = susp->scale1;
c3co_reg = susp->c3co;
coshz_reg = susp->coshz;
c2_reg = susp->c2;
c1_reg = susp->c1;
normalization_reg = susp->normalization;
y1_reg = susp->y1;
y2_reg = susp->y2;
bw_ptr_reg = susp->bw_ptr;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
double c3p1;
double c3t4;
double omc3;
c3co_reg = exp((bw_scale_reg * *bw_ptr_reg++));
c3p1 = c3co_reg + 1.0;
c3t4 = c3co_reg * 4.0;
omc3 = 1.0 - c3co_reg;
c2_reg = c3t4 * coshz_reg / c3p1;
c1_reg = (normalization_reg == 0 ? 1.0 :
(normalization_reg == 1 ? omc3 * sqrt(1.0 - c2_reg * c2_reg / c3t4) :
sqrt(c3p1 * c3p1 - c2_reg * c2_reg) * omc3 / c3p1)) * scale1_reg;
{ double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg;
*out_ptr_reg++ = (sample_type) y0;
y2_reg = y1_reg; y1_reg = y0; };
} while (--n); /* inner loop */
susp->y1 = y1_reg;
susp->y2 = y2_reg;
/* using bw_ptr_reg is a bad idea on RS/6000: */
susp->bw_ptr += togo;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp_took(bw_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* resoncv_ns_fetch */
void resoncv_ni_fetch(register resoncv_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double scale1_reg;
register double c3co_reg;
register double coshz_reg;
register double c2_reg;
register double c1_reg;
register int normalization_reg;
register double y1_reg;
register double y2_reg;
register double bw_pHaSe_iNcR_rEg = susp->bw_pHaSe_iNcR;
register double bw_pHaSe_ReG;
register sample_type bw_x1_sample_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "resoncv_ni_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
double c3p1;
double c3t4;
double omc3;
susp->started = true;
susp_check_term_samples(bw, bw_ptr, bw_cnt);
susp->bw_x1_sample = susp_fetch_sample(bw, bw_ptr, bw_cnt);
susp->c3co = exp(susp->bw_x1_sample);
c3p1 = susp->c3co + 1.0;
c3t4 = susp->c3co * 4.0;
omc3 = 1.0 - susp->c3co;
susp->c2 = c3t4 * susp->coshz / c3p1;
susp->c1 = (susp->normalization == 0 ? 1.0 :
(susp->normalization == 1 ? omc3 * sqrt(1.0 - susp->c2 * susp->c2 / c3t4) :
sqrt(c3p1 * c3p1 - susp->c2 * susp->c2) * omc3 / c3p1)) * susp->scale1;
}
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
scale1_reg = susp->scale1;
c3co_reg = susp->c3co;
coshz_reg = susp->coshz;
c2_reg = susp->c2;
c1_reg = susp->c1;
normalization_reg = susp->normalization;
y1_reg = susp->y1;
y2_reg = susp->y2;
bw_pHaSe_ReG = susp->bw_pHaSe;
bw_x1_sample_reg = susp->bw_x1_sample;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
if (bw_pHaSe_ReG >= 1.0) {
/* fixup-depends bw */
double c3p1;
double c3t4;
double omc3;
/* pick up next sample as bw_x1_sample: */
susp->bw_ptr++;
susp_took(bw_cnt, 1);
bw_pHaSe_ReG -= 1.0;
susp_check_term_samples_break(bw, bw_ptr, bw_cnt, bw_x1_sample_reg);
bw_x1_sample_reg = susp_current_sample(bw, bw_ptr);
c3co_reg = susp->c3co = exp(bw_x1_sample_reg);
c3p1 = c3co_reg + 1.0;
c3t4 = c3co_reg * 4.0;
omc3 = 1.0 - c3co_reg;
c2_reg = susp->c2 = c3t4 * coshz_reg / c3p1;
c1_reg = susp->c1 = (normalization_reg == 0 ? 1.0 :
(normalization_reg == 1 ? omc3 * sqrt(1.0 - c2_reg * c2_reg / c3t4) :
sqrt(c3p1 * c3p1 - c2_reg * c2_reg) * omc3 / c3p1)) * scale1_reg;
}
{ double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg;
*out_ptr_reg++ = (sample_type) y0;
y2_reg = y1_reg; y1_reg = y0; };
bw_pHaSe_ReG += bw_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->y1 = y1_reg;
susp->y2 = y2_reg;
susp->bw_pHaSe = bw_pHaSe_ReG;
susp->bw_x1_sample = bw_x1_sample_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* resoncv_ni_fetch */
void resoncv_nr_fetch(register resoncv_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
sample_type bw_val;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double scale1_reg;
register double c3co_reg;
register double coshz_reg;
register double c2_reg;
register double c1_reg;
register int normalization_reg;
register double y1_reg;
register double y2_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "resoncv_nr_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->bw_pHaSe = 1.0;
}
susp_check_term_samples(bw, bw_ptr, bw_cnt);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* grab next bw_x1_sample when phase goes past 1.0; */
/* use bw_n (computed below) to avoid roundoff errors: */
if (susp->bw_n <= 0) {
double c3p1;
double c3t4;
double omc3;
susp_check_term_samples(bw, bw_ptr, bw_cnt);
susp->bw_x1_sample = susp_fetch_sample(bw, bw_ptr, bw_cnt);
susp->bw_pHaSe -= 1.0;
/* bw_n gets number of samples before phase exceeds 1.0: */
susp->bw_n = (long) ((1.0 - susp->bw_pHaSe) *
susp->output_per_bw);
susp->c3co = exp(susp->bw_x1_sample);
c3p1 = susp->c3co + 1.0;
c3t4 = susp->c3co * 4.0;
omc3 = 1.0 - susp->c3co;
susp->c2 = c3t4 * susp->coshz / c3p1;
susp->c1 = (susp->normalization == 0 ? 1.0 :
(susp->normalization == 1 ? omc3 * sqrt(1.0 - susp->c2 * susp->c2 / c3t4) :
sqrt(c3p1 * c3p1 - susp->c2 * susp->c2) * omc3 / c3p1)) * susp->scale1;
}
togo = min(togo, susp->bw_n);
bw_val = susp->bw_x1_sample;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
scale1_reg = susp->scale1;
c3co_reg = susp->c3co;
coshz_reg = susp->coshz;
c2_reg = susp->c2;
c1_reg = susp->c1;
normalization_reg = susp->normalization;
y1_reg = susp->y1;
y2_reg = susp->y2;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
{ double y0 = c1_reg * *s1_ptr_reg++ + c2_reg * y1_reg - c3co_reg * y2_reg;
*out_ptr_reg++ = (sample_type) y0;
y2_reg = y1_reg; y1_reg = y0; };
} while (--n); /* inner loop */
susp->y1 = y1_reg;
susp->y2 = y2_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp->bw_pHaSe += togo * susp->bw_pHaSe_iNcR;
susp->bw_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* resoncv_nr_fetch */
void resoncv_toss_fetch(susp, snd_list)
register resoncv_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from s1 up to final_time for this block of zeros */
while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >=
susp->s1->current)
susp_get_samples(s1, s1_ptr, s1_cnt);
/* fetch samples from bw up to final_time for this block of zeros */
while ((round((final_time - susp->bw->t0) * susp->bw->sr)) >=
susp->bw->current)
susp_get_samples(bw, bw_ptr, bw_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->s1->t0) * susp->s1->sr -
(susp->s1->current - susp->s1_cnt));
susp->s1_ptr += n;
susp_took(s1_cnt, n);
n = round((final_time - susp->bw->t0) * susp->bw->sr -
(susp->bw->current - susp->bw_cnt));
susp->bw_ptr += n;
susp_took(bw_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void resoncv_mark(resoncv_susp_type susp)
{
sound_xlmark(susp->s1);
sound_xlmark(susp->bw);
}
void resoncv_free(resoncv_susp_type susp)
{
sound_unref(susp->s1);
sound_unref(susp->bw);
ffree_generic(susp, sizeof(resoncv_susp_node), "resoncv_free");
}
void resoncv_print_tree(resoncv_susp_type susp, int n)
{
indent(n);
stdputstr("s1:");
sound_print_tree_1(susp->s1, n);
indent(n);
stdputstr("bw:");
sound_print_tree_1(susp->bw, n);
}
sound_type snd_make_resoncv(sound_type s1, double hz, sound_type bw, int normalization)
{
register resoncv_susp_type susp;
rate_type sr = s1->sr;
time_type t0 = max(s1->t0, bw->t0);
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, resoncv_susp_node, "snd_make_resoncv");
susp->scale1 = s1->scale;
susp->c3co = 0.0;
susp->coshz = cos(hz * PI2 / s1->sr);
susp->c2 = 0.0;
susp->c1 = 0.0;
susp->normalization = normalization;
susp->y1 = 0.0;
susp->y2 = 0.0;
bw->scale = (sample_type) (bw->scale * (-PI2 / s1->sr));
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(s1, sr);
interp_desc = (interp_desc << 2) + interp_style(bw, sr);
switch (interp_desc) {
case INTERP_sn: /* handled below */
case INTERP_ss: /* handled below */
case INTERP_nn: /* handled below */
case INTERP_ns: susp->susp.fetch = resoncv_ns_fetch; break;
case INTERP_si: /* handled below */
case INTERP_ni: susp->susp.fetch = resoncv_ni_fetch; break;
case INTERP_sr: /* handled below */
case INTERP_nr: susp->susp.fetch = resoncv_nr_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s1->t0) sound_prepend_zeros(s1, t0);
if (t0 < bw->t0) sound_prepend_zeros(bw, t0);
/* minimum start time over all inputs: */
t0_min = min(s1->t0, min(bw->t0, t0));
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = resoncv_toss_fetch;
}
/* initialize susp state */
susp->susp.free = resoncv_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = resoncv_mark;
susp->susp.print_tree = resoncv_print_tree;
susp->susp.name = "resoncv";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1);
susp->started = false;
susp->susp.current = 0;
susp->s1 = s1;
susp->s1_cnt = 0;
susp->bw = bw;
susp->bw_cnt = 0;
susp->bw_pHaSe = 0.0;
susp->bw_pHaSe_iNcR = bw->sr / sr;
susp->bw_n = 0;
susp->output_per_bw = sr / bw->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_resoncv(sound_type s1, double hz, sound_type bw, int normalization)
{
sound_type s1_copy = sound_copy(s1);
sound_type bw_copy = sound_copy(bw);
return snd_make_resoncv(s1_copy, hz, bw_copy, normalization);
}