mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-05 14:18:53 +02:00
537 lines
16 KiB
C
537 lines
16 KiB
C
#include "stdio.h"
|
|
#ifndef mips
|
|
#include "stdlib.h"
|
|
#endif
|
|
#include "xlisp.h"
|
|
#include "sound.h"
|
|
|
|
#include "falloc.h"
|
|
#include "cext.h"
|
|
#include "buzz.h"
|
|
|
|
void buzz_free();
|
|
|
|
|
|
typedef struct buzz_susp_struct {
|
|
snd_susp_node susp;
|
|
boolean started;
|
|
long terminate_cnt;
|
|
boolean logically_stopped;
|
|
sound_type s_fm;
|
|
long s_fm_cnt;
|
|
sample_block_values_type s_fm_ptr;
|
|
|
|
/* support for interpolation of s_fm */
|
|
sample_type s_fm_x1_sample;
|
|
double s_fm_pHaSe;
|
|
double s_fm_pHaSe_iNcR;
|
|
|
|
/* support for ramp between samples of s_fm */
|
|
double output_per_s_fm;
|
|
long s_fm_n;
|
|
|
|
double ph_incr;
|
|
float n_2_r;
|
|
float n_2_p1;
|
|
double phase;
|
|
} buzz_susp_node, *buzz_susp_type;
|
|
|
|
|
|
#include "sine.h"
|
|
|
|
|
|
void buzz_s_fetch(register buzz_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double ph_incr_reg;
|
|
register float n_2_r_reg;
|
|
register float n_2_p1_reg;
|
|
register double phase_reg;
|
|
register sample_type s_fm_scale_reg = susp->s_fm->scale;
|
|
register sample_block_values_type s_fm_ptr_reg;
|
|
falloc_sample_block(out, "buzz_s_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s_fm input sample block: */
|
|
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
|
|
togo = min(togo, susp->s_fm_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
ph_incr_reg = susp->ph_incr;
|
|
n_2_r_reg = susp->n_2_r;
|
|
n_2_p1_reg = susp->n_2_p1;
|
|
phase_reg = susp->phase;
|
|
s_fm_ptr_reg = susp->s_fm_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long table_index;
|
|
double x1;
|
|
sample_type num, denom, samp;
|
|
|
|
table_index = (long) phase_reg;
|
|
x1 = sine_table[table_index];
|
|
denom = (sample_type) (x1 + (phase_reg - table_index) *
|
|
(sine_table[table_index + 1] - x1));
|
|
if (denom < 0.001 && denom > -0.005) {
|
|
samp = 1.0F;
|
|
} else {
|
|
double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
|
|
phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
|
|
table_index = (long) phn2p1;
|
|
x1 = sine_table[table_index];
|
|
num = (sample_type) (x1 + (phn2p1 - table_index) *
|
|
(sine_table[table_index + 1] - x1));
|
|
samp = ((num / denom) - 1.0F) * n_2_r_reg;
|
|
}
|
|
*out_ptr_reg++ = samp;
|
|
phase_reg += ph_incr_reg + (s_fm_scale_reg * *s_fm_ptr_reg++);
|
|
while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* watch out for negative frequencies! */
|
|
while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->phase = phase_reg;
|
|
/* using s_fm_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s_fm_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s_fm_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* buzz_s_fetch */
|
|
|
|
|
|
void buzz_i_fetch(register buzz_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double ph_incr_reg;
|
|
register float n_2_r_reg;
|
|
register float n_2_p1_reg;
|
|
register double phase_reg;
|
|
register double s_fm_pHaSe_iNcR_rEg = susp->s_fm_pHaSe_iNcR;
|
|
register double s_fm_pHaSe_ReG;
|
|
register sample_type s_fm_x1_sample_reg;
|
|
falloc_sample_block(out, "buzz_i_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
|
|
susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt);
|
|
}
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
ph_incr_reg = susp->ph_incr;
|
|
n_2_r_reg = susp->n_2_r;
|
|
n_2_p1_reg = susp->n_2_p1;
|
|
phase_reg = susp->phase;
|
|
s_fm_pHaSe_ReG = susp->s_fm_pHaSe;
|
|
s_fm_x1_sample_reg = susp->s_fm_x1_sample;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long table_index;
|
|
double x1;
|
|
sample_type num, denom, samp;
|
|
if (s_fm_pHaSe_ReG >= 1.0) {
|
|
/* fixup-depends s_fm */
|
|
/* pick up next sample as s_fm_x1_sample: */
|
|
susp->s_fm_ptr++;
|
|
susp_took(s_fm_cnt, 1);
|
|
s_fm_pHaSe_ReG -= 1.0;
|
|
susp_check_term_log_samples_break(s_fm, s_fm_ptr, s_fm_cnt, s_fm_x1_sample_reg);
|
|
s_fm_x1_sample_reg = susp_current_sample(s_fm, s_fm_ptr);
|
|
}
|
|
|
|
table_index = (long) phase_reg;
|
|
x1 = sine_table[table_index];
|
|
denom = (sample_type) (x1 + (phase_reg - table_index) *
|
|
(sine_table[table_index + 1] - x1));
|
|
if (denom < 0.001 && denom > -0.005) {
|
|
samp = 1.0F;
|
|
} else {
|
|
double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
|
|
phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
|
|
table_index = (long) phn2p1;
|
|
x1 = sine_table[table_index];
|
|
num = (sample_type) (x1 + (phn2p1 - table_index) *
|
|
(sine_table[table_index + 1] - x1));
|
|
samp = ((num / denom) - 1.0F) * n_2_r_reg;
|
|
}
|
|
*out_ptr_reg++ = samp;
|
|
phase_reg += ph_incr_reg + s_fm_x1_sample_reg;
|
|
while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* watch out for negative frequencies! */
|
|
while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
|
|
s_fm_pHaSe_ReG += s_fm_pHaSe_iNcR_rEg;
|
|
} while (--n); /* inner loop */
|
|
|
|
togo -= n;
|
|
susp->phase = phase_reg;
|
|
susp->s_fm_pHaSe = s_fm_pHaSe_ReG;
|
|
susp->s_fm_x1_sample = s_fm_x1_sample_reg;
|
|
out_ptr += togo;
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* buzz_i_fetch */
|
|
|
|
|
|
void buzz_r_fetch(register buzz_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
sample_type s_fm_val;
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double ph_incr_reg;
|
|
register float n_2_r_reg;
|
|
register float n_2_p1_reg;
|
|
register double phase_reg;
|
|
falloc_sample_block(out, "buzz_r_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp->s_fm_pHaSe = 1.0;
|
|
}
|
|
|
|
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* grab next s_fm_x1_sample when phase goes past 1.0; */
|
|
/* use s_fm_n (computed below) to avoid roundoff errors: */
|
|
if (susp->s_fm_n <= 0) {
|
|
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
|
|
susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt);
|
|
susp->s_fm_pHaSe -= 1.0;
|
|
/* s_fm_n gets number of samples before phase exceeds 1.0: */
|
|
susp->s_fm_n = (long) ((1.0 - susp->s_fm_pHaSe) *
|
|
susp->output_per_s_fm);
|
|
}
|
|
togo = min(togo, susp->s_fm_n);
|
|
s_fm_val = susp->s_fm_x1_sample;
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
ph_incr_reg = susp->ph_incr;
|
|
n_2_r_reg = susp->n_2_r;
|
|
n_2_p1_reg = susp->n_2_p1;
|
|
phase_reg = susp->phase;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long table_index;
|
|
double x1;
|
|
sample_type num, denom, samp;
|
|
|
|
table_index = (long) phase_reg;
|
|
x1 = sine_table[table_index];
|
|
denom = (sample_type) (x1 + (phase_reg - table_index) *
|
|
(sine_table[table_index + 1] - x1));
|
|
if (denom < 0.001 && denom > -0.005) {
|
|
samp = 1.0F;
|
|
} else {
|
|
double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
|
|
phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
|
|
table_index = (long) phn2p1;
|
|
x1 = sine_table[table_index];
|
|
num = (sample_type) (x1 + (phn2p1 - table_index) *
|
|
(sine_table[table_index + 1] - x1));
|
|
samp = ((num / denom) - 1.0F) * n_2_r_reg;
|
|
}
|
|
*out_ptr_reg++ = samp;
|
|
phase_reg += ph_incr_reg + s_fm_val;
|
|
while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* watch out for negative frequencies! */
|
|
while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->phase = phase_reg;
|
|
out_ptr += togo;
|
|
susp->s_fm_pHaSe += togo * susp->s_fm_pHaSe_iNcR;
|
|
susp->s_fm_n -= togo;
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* buzz_r_fetch */
|
|
|
|
|
|
void buzz_toss_fetch(susp, snd_list)
|
|
register buzz_susp_type susp;
|
|
snd_list_type snd_list;
|
|
{
|
|
long final_count = susp->susp.toss_cnt;
|
|
time_type final_time = susp->susp.t0;
|
|
long n;
|
|
|
|
/* fetch samples from s_fm up to final_time for this block of zeros */
|
|
while ((round((final_time - susp->s_fm->t0) * susp->s_fm->sr)) >=
|
|
susp->s_fm->current)
|
|
susp_get_samples(s_fm, s_fm_ptr, s_fm_cnt);
|
|
/* convert to normal processing when we hit final_count */
|
|
/* we want each signal positioned at final_time */
|
|
n = round((final_time - susp->s_fm->t0) * susp->s_fm->sr -
|
|
(susp->s_fm->current - susp->s_fm_cnt));
|
|
susp->s_fm_ptr += n;
|
|
susp_took(s_fm_cnt, n);
|
|
susp->susp.fetch = susp->susp.keep_fetch;
|
|
(*(susp->susp.fetch))(susp, snd_list);
|
|
}
|
|
|
|
|
|
void buzz_mark(buzz_susp_type susp)
|
|
{
|
|
sound_xlmark(susp->s_fm);
|
|
}
|
|
|
|
|
|
void buzz_free(buzz_susp_type susp)
|
|
{
|
|
sound_unref(susp->s_fm);
|
|
ffree_generic(susp, sizeof(buzz_susp_node), "buzz_free");
|
|
}
|
|
|
|
|
|
void buzz_print_tree(buzz_susp_type susp, int n)
|
|
{
|
|
indent(n);
|
|
stdputstr("s_fm:");
|
|
sound_print_tree_1(susp->s_fm, n);
|
|
}
|
|
|
|
|
|
sound_type snd_make_buzz(long n, rate_type sr, double hz, time_type t0, sound_type s_fm)
|
|
{
|
|
register buzz_susp_type susp;
|
|
/* sr specified as input parameter */
|
|
/* t0 specified as input parameter */
|
|
int interp_desc = 0;
|
|
sample_type scale_factor = 1.0F;
|
|
time_type t0_min = t0;
|
|
falloc_generic(susp, buzz_susp_node, "snd_make_buzz");
|
|
susp->ph_incr = 0;
|
|
susp->n_2_r = 1.0F / (n * 2);
|
|
susp->n_2_p1 = (n * 2) + 1;
|
|
susp->phase = compute_phase(PI*0.5, 69.0, SINE_TABLE_LEN,
|
|
SINE_TABLE_LEN * 440.0, sr, hz * 0.5, &susp->ph_incr);
|
|
s_fm->scale *= hz != 0 ? (sample_type) (susp->ph_incr / hz)
|
|
: (sample_type) (SINE_TABLE_LEN * 0.5 / sr);
|
|
|
|
/* select a susp fn based on sample rates */
|
|
interp_desc = (interp_desc << 2) + interp_style(s_fm, sr);
|
|
switch (interp_desc) {
|
|
case INTERP_n: /* handled below */
|
|
case INTERP_s: susp->susp.fetch = buzz_s_fetch; break;
|
|
case INTERP_i: susp->susp.fetch = buzz_i_fetch; break;
|
|
case INTERP_r: susp->susp.fetch = buzz_r_fetch; break;
|
|
default: snd_badsr(); break;
|
|
}
|
|
|
|
susp->terminate_cnt = UNKNOWN;
|
|
/* handle unequal start times, if any */
|
|
if (t0 < s_fm->t0) sound_prepend_zeros(s_fm, t0);
|
|
/* minimum start time over all inputs: */
|
|
t0_min = min(s_fm->t0, t0);
|
|
/* how many samples to toss before t0: */
|
|
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
|
|
if (susp->susp.toss_cnt > 0) {
|
|
susp->susp.keep_fetch = susp->susp.fetch;
|
|
susp->susp.fetch = buzz_toss_fetch;
|
|
}
|
|
|
|
/* initialize susp state */
|
|
susp->susp.free = buzz_free;
|
|
susp->susp.sr = sr;
|
|
susp->susp.t0 = t0;
|
|
susp->susp.mark = buzz_mark;
|
|
susp->susp.print_tree = buzz_print_tree;
|
|
susp->susp.name = "buzz";
|
|
susp->logically_stopped = false;
|
|
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s_fm);
|
|
susp->started = false;
|
|
susp->susp.current = 0;
|
|
susp->s_fm = s_fm;
|
|
susp->s_fm_cnt = 0;
|
|
susp->s_fm_pHaSe = 0.0;
|
|
susp->s_fm_pHaSe_iNcR = s_fm->sr / sr;
|
|
susp->s_fm_n = 0;
|
|
susp->output_per_s_fm = sr / s_fm->sr;
|
|
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
|
|
}
|
|
|
|
|
|
sound_type snd_buzz(long n, rate_type sr, double hz, time_type t0, sound_type s_fm)
|
|
{
|
|
sound_type s_fm_copy = sound_copy(s_fm);
|
|
return snd_make_buzz(n, sr, hz, t0, s_fm_copy);
|
|
}
|