1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-13 15:38:56 +02:00
2010-01-24 09:19:39 +00:00

287 lines
9.1 KiB
C

#include "stdio.h"
#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
#include <math.h>
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "ifft.h"
void ifft_free();
typedef struct ifft_susp_struct {
snd_susp_node susp;
long index;
long length;
LVAL array;
long window_len;
sample_type *outbuf;
LVAL src;
long stepsize;
sample_type *window;
sample_type *samples;
table_type table;
} ifft_susp_node, *ifft_susp_type;
/* index: index into outbuf whree we get output samples
* length: size of the frame, window, and outbuf; half size of samples
* array: spectral frame goes here (why not a local var?)
* window_len: size of window, should equal length
* outbuf: real part of samples are multiplied by window and added to
* outbuf (after shifting)
* src: send :NEXT to this object to get next frame
* stepsize: shift by this many and add each frame
* samples: result of ifft goes here, real and imag
* window: multiply samples by window if any
*
* IMPLEMENTATION NOTE:
* The src argument is an XLisp object that returns either an
* array of samples or NIL. The output of ifft is simply the
* concatenation of the samples taken from the array. Later,
* an ifft will be plugged in and this will return overlapped
* adds of the ifft's.
*
* OVERLAP: stepsize must be less than or equal to the length
* of real part of the transformed spectrum. A transform step
* works like this:
* (1) shift the output buffer by stepsize samples, filling
* the end of the buffer with zeros
* (2) get and transform an array of spectral coefficients
* (3) multiply the result by a window
* (4) add the result to the output buffer
* (5) output the first stepsize samples of the buffer
*
* DATA FORMAT: the DC component goes in array elem 0
* Cosine part is in elements 2*i-1
* Sine part is in elements 2*i
* Nyquist frequency is in element length-1
*/
#include "samples.h"
#include "fftext.h"
#define MUST_BE_FLONUM(e) \
if (!(e) || ntype(e) != FLONUM) { xlerror("flonum expected", (e)); }
table_type get_window_samples(LVAL window, sample_type **samples, long *len)
{
table_type result = NULL;
if (soundp(window)) {
sound_type window_sound = getsound(window);
xlprot1(window); /* maybe not necessary */
result = sound_to_table(window_sound);
xlpop();
*samples = result->samples;
*len = (long) (result->length + 0.5);
}
return result;
}
void ifft__fetch(register ifft_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register long index_reg;
register sample_type * outbuf_reg;
falloc_sample_block(out, "ifft__fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
if (susp->src == NULL) {
out: togo = 0; /* indicate termination */
break; /* we're done */
}
if (susp->index >= susp->stepsize) {
long i;
long m, n;
LVAL elem;
susp->index = 0;
susp->array =
xleval(cons(s_send, cons(susp->src, consa(s_next))));
if (susp->array == NULL) {
susp->src = NULL;
goto out;
} else if (!vectorp(susp->array)) {
xlerror("array expected", susp->array);
} else if (susp->samples == NULL) {
/* assume arrays are all the same size as first one;
now that we know the size, we just have to do this
first allocation.
*/
susp->length = getsize(susp->array);
if (susp->length < 1)
xlerror("array has no elements", susp->array);
if (susp->window && (susp->window_len != susp->length))
xlerror("window size and spectrum size differ",
susp->array);
/* tricky non-power of 2 detector: only if this is a
* power of 2 will the highest 1 bit be cleared when
* we subtract 1 ...
*/
if (susp->length & (susp->length - 1))
xlfail("spectrum size must be a power of 2");
susp->samples = (sample_type *) calloc(susp->length,
sizeof(sample_type));
susp->outbuf = (sample_type *) calloc(susp->length,
sizeof(sample_type));
} else if (getsize(susp->array) != susp->length) {
xlerror("arrays must all be the same length", susp->array);
}
/* at this point, we have a new array to put samples */
/* the incoming array format is [DC, R1, I1, R2, I2, ... RN]
* where RN is the real coef at the Nyquist frequency
* but susp->samples should be organized as [DC, RN, R1, I1, ...]
*/
n = susp->length;
/* get the DC (real) coef */
elem = getelement(susp->array, 0);
MUST_BE_FLONUM(elem)
susp->samples[0] = (sample_type) getflonum(elem);
/* get the Nyquist (real) coef */
elem = getelement(susp->array, n - 1);
MUST_BE_FLONUM(elem);
susp->samples[1] = (sample_type) getflonum(elem);
/* get the remaining coef */
for (i = 1; i < n - 1; i++) {
elem = getelement(susp->array, i);
MUST_BE_FLONUM(elem)
susp->samples[i + 1] = (sample_type) getflonum(elem);
}
susp->array = NULL; /* free the array */
/* here is where the IFFT and windowing should take place */
//fftnf(1, &n, susp->samples, susp->samples + n, -1, 1.0);
m = round(log(n) / M_LN2);
if (!fftInit(m)) riffts(susp->samples, m, 1);
else xlfail("FFT initialization error");
if (susp->window) {
n = susp->length;
for (i = 0; i < n; i++) {
susp->samples[i] *= susp->window[i];
}
}
/* shift the outbuf */
n = susp->length - susp->stepsize;
for (i = 0; i < n; i++) {
susp->outbuf[i] = susp->outbuf[i + susp->stepsize];
}
/* clear end of outbuf */
for (i = n; i < susp->length; i++) {
susp->outbuf[i] = 0;
}
/* add in the ifft result */
n = susp->length;
for (i = 0; i < n; i++) {
susp->outbuf[i] += susp->samples[i];
}
}
togo = min(togo, susp->stepsize - susp->index);
n = togo;
index_reg = susp->index;
outbuf_reg = susp->outbuf;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = outbuf_reg[index_reg++];;
} while (--n); /* inner loop */
susp->index = index_reg;
susp->outbuf = outbuf_reg;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
} /* ifft__fetch */
void ifft_mark(ifft_susp_type susp)
{
if (susp->src) mark(susp->src);
if (susp->array) mark(susp->array);
}
void ifft_free(ifft_susp_type susp)
{
if (susp->samples) free(susp->samples);
if (susp->table) table_unref(susp->table);
if (susp->outbuf) free(susp->outbuf);
ffree_generic(susp, sizeof(ifft_susp_node), "ifft_free");
}
void ifft_print_tree(ifft_susp_type susp, int n)
{
}
sound_type snd_make_ifft(time_type t0, rate_type sr, LVAL src, long stepsize, LVAL window)
{
register ifft_susp_type susp;
/* sr specified as input parameter */
/* t0 specified as input parameter */
sample_type scale_factor = 1.0F;
falloc_generic(susp, ifft_susp_node, "snd_make_ifft");
susp->index = stepsize;
susp->length = 0;
susp->array = NULL;
susp->window_len = 0;
susp->outbuf = NULL;
susp->src = src;
susp->stepsize = stepsize;
susp->window = NULL;
susp->samples = NULL;
susp->table = get_window_samples(window, &susp->window, &susp->window_len);
susp->susp.fetch = ifft__fetch;
/* initialize susp state */
susp->susp.free = ifft_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = ifft_mark;
susp->susp.print_tree = ifft_print_tree;
susp->susp.name = "ifft";
susp->susp.log_stop_cnt = UNKNOWN;
susp->susp.current = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_ifft(time_type t0, rate_type sr, LVAL src, long stepsize, LVAL window)
{
return snd_make_ifft(t0, sr, src, stepsize, window);
}