1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-07-04 14:39:08 +02:00
2010-01-24 09:19:39 +00:00

199 lines
5.8 KiB
C++

/***************************************************/
/*! \class Saxofony
\brief STK faux conical bore reed instrument class.
This class implements a "hybrid" digital
waveguide instrument that can generate a
variety of wind-like sounds. It has also been
referred to as the "blowed string" model. The
waveguide section is essentially that of a
string, with one rigid and one lossy
termination. The non-linear function is a
reed table. The string can be "blown" at any
point between the terminations, though just as
with strings, it is impossible to excite the
system at either end. If the excitation is
placed at the string mid-point, the sound is
that of a clarinet. At points closer to the
"bridge", the sound is closer to that of a
saxophone. See Scavone (2002) for more details.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Reed Aperture = 26
- Noise Gain = 4
- Blow Position = 11
- Vibrato Frequency = 29
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2005.
*/
/***************************************************/
#include "Saxofony.h"
#include "SKINI.msg"
using namespace Nyq;
Saxofony :: Saxofony(StkFloat lowestFrequency)
{
length_ = (unsigned long) (Stk::sampleRate() / lowestFrequency + 1);
// Initialize blowing position to 0.2 of length / 2.
position_ = 0.2;
delays_[0].setMaximumDelay( length_ );
delays_[0].setDelay( (1.0-position_) * (length_ >> 1) );
delays_[1].setMaximumDelay( length_ );
delays_[1].setDelay( (1.0-position_) * (length_ >> 1) );
reedTable_.setOffset( 0.7 );
reedTable_.setSlope( 0.3 );
vibrato_.setFrequency((StkFloat) 5.735);
outputGain_ = 0.3;
noiseGain_ = 0.2;
vibratoGain_ = 0.1;
}
Saxofony :: ~Saxofony()
{
}
void Saxofony :: clear()
{
delays_[0].clear();
delays_[1].clear();
filter_.clear();
}
void Saxofony :: setFrequency(StkFloat frequency)
{
StkFloat freakency = frequency;
if ( frequency <= 0.0 ) {
errorString_ << "Saxofony::setFrequency: parameter is less than or equal to zero!";
handleError( StkError::WARNING );
freakency = 220.0;
}
StkFloat delay = (Stk::sampleRate() / freakency) - (StkFloat) 3.0;
if (delay <= 0.0) delay = 0.3;
else if (delay > length_) delay = length_;
delays_[0].setDelay( (1.0-position_) * delay );
delays_[1].setDelay( position_ * delay );
}
void Saxofony :: setBlowPosition(StkFloat position)
{
if ( position_ == position ) return;
if ( position < 0.0 ) position_ = 0.0;
else if ( position > 1.0 ) position_ = 1.0;
else position_ = position;
StkFloat totalDelay = delays_[0].getDelay();
totalDelay += delays_[1].getDelay();
delays_[0].setDelay( (1.0-position_) * totalDelay );
delays_[1].setDelay( position_ * totalDelay );
}
void Saxofony :: startBlowing(StkFloat amplitude, StkFloat rate)
{
envelope_.setRate( rate );
envelope_.setTarget( amplitude );
}
void Saxofony :: stopBlowing(StkFloat rate)
{
envelope_.setRate( rate );
envelope_.setTarget( 0.0 );
}
void Saxofony :: noteOn(StkFloat frequency, StkFloat amplitude)
{
this->setFrequency( frequency );
this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 );
outputGain_ = amplitude + 0.001;
#if defined(_STK_DEBUG_)
errorString_ << "Saxofony::NoteOn: frequency = " << frequency << ", amplitude = " << amplitude << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}
void Saxofony :: noteOff(StkFloat amplitude)
{
this->stopBlowing( amplitude * 0.01 );
#if defined(_STK_DEBUG_)
errorString_ << "Saxofony::NoteOff: amplitude = " << amplitude << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}
StkFloat Saxofony :: computeSample()
{
StkFloat pressureDiff;
StkFloat breathPressure;
StkFloat temp;
// Calculate the breath pressure (envelope + noise + vibrato)
breathPressure = envelope_.tick();
breathPressure += breathPressure * noiseGain_ * noise_.tick();
breathPressure += breathPressure * vibratoGain_ * vibrato_.tick();
temp = -0.95 * filter_.tick( delays_[0].lastOut() );
lastOutput_ = temp - delays_[1].lastOut();
pressureDiff = breathPressure - lastOutput_;
delays_[1].tick( temp );
delays_[0].tick( breathPressure - (pressureDiff * reedTable_.tick(pressureDiff)) - temp );
lastOutput_ *= outputGain_;
return lastOutput_;
}
void Saxofony :: controlChange(int number, StkFloat value)
{
StkFloat norm = value * ONE_OVER_128;
if ( norm < 0 ) {
norm = 0.0;
errorString_ << "Saxofony::controlChange: control value less than zero ... setting to zero!";
handleError( StkError::WARNING );
}
else if ( norm > 1.0 ) {
norm = 1.0;
errorString_ << "Saxofony::controlChange: control value greater than 128.0 ... setting to 128.0!";
handleError( StkError::WARNING );
}
if (number == __SK_ReedStiffness_) // 2
reedTable_.setSlope( 0.1 + (0.4 * norm) );
else if (number == __SK_NoiseLevel_) // 4
noiseGain_ = ( norm * 0.4 );
else if (number == 29) // 29
vibrato_.setFrequency( norm * 12.0 );
else if (number == __SK_ModWheel_) // 1
vibratoGain_ = ( norm * 0.5 );
else if (number == __SK_AfterTouch_Cont_) // 128
envelope_.setValue( norm );
else if (number == 11) // 11
this->setBlowPosition( norm );
else if (number == 26) // reed table offset
reedTable_.setOffset(0.4 + ( norm * 0.6));
else {
errorString_ << "Saxofony::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#if defined(_STK_DEBUG_)
errorString_ << "Saxofony::controlChange: number = " << number << ", value = " << value << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}