1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-04-30 15:49:41 +02:00
audacity/lib-src/portsmf/allegrosmfwr.cpp

648 lines
20 KiB
C++

// allegrosmfwr.cpp -- Allegro Standard Midi File Write
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <string>
#include <iostream>
#include <fstream>
using namespace std;
#include "allegro.h"
// event_queue is a list element that keeps track of pending
// things to write to a track, including note-ons, note-offs,
// updates, tempo changes, and time signatures
//
class event_queue{
public:
char type;//'n' for note, 'o' for off, 's' for time signature,
// 'c' for tempo changes
double time;
long index; //of the event in mSeq->notes
class event_queue *next;
event_queue(char t, double when, long x, class event_queue *n) {
type = t; time = when; index = x; next = n; }
};
class Alg_smf_write {
public:
Alg_smf_write(Alg_seq_ptr seq);
~Alg_smf_write();
long channels_per_track; // used to encode track number into chan field
// chan is actual_channel + channels_per_track * track_number
// default is 100, set this to 0 to merge all tracks to 16 channels
void write(ostream &file /* , midiFileFormat = 1 */);
private:
long previous_divs; // time in ticks of most recently written event
void write_track(int i);
void write_tempo(int divs, int tempo);
void write_tempo_change(int i);
void write_time_signature(int i);
void write_note(Alg_note_ptr note, bool on);
void write_update(Alg_update_ptr update);
void write_text(Alg_update_ptr update, char type);
void write_binary(int type_byte, const char *msg);
void write_midi_channel_prefix(Alg_update_ptr update);
void write_smpteoffset(Alg_update_ptr update, char *s);
void write_data(int data);
int to_midi_channel(int channel);
int to_track(int channel);
ostream *out_file;
Alg_seq_ptr seq;
int num_tracks; // number of tracks not counting tempo track
int division; // divisions per quarter note, default = 120
int initial_tempo;
int timesig_num; // numerator of time signature
int timesig_den; // denominator of time signature
double timesig_when; // time of time signature
int keysig; // number of sharps (+) or flats (-), -99 for undefined
char keysig_mode; // 'M' or 'm' for major/minor
double keysig_when; // time of key signature
void write_delta(double event_time);
void write_varinum(int num);
void write_16bit(int num);
void write_24bit(int num);
void write_32bit(int num);
};
#define ROUND(x) (int) ((x)+0.5)
Alg_smf_write::Alg_smf_write(Alg_seq_ptr a_seq)
{
out_file = NULL;
// at 100bpm (a nominal tempo value), we would like a division
// to represent 1ms of time. So
// d ticks/beat * 100 beats/min = 60,000 ms/min * 1 tick/ms
// solving for d, d = 600
division = 600; // divisions per quarter note
timesig_num = timesig_den = 0; // initially undefined
keysig = -99;
keysig_mode = 0;
initial_tempo = 500000;
seq = a_seq;
previous_divs = 0; // used to compute deltas for midifile
}
Alg_smf_write::~Alg_smf_write()
{
}
// sorting is quite subtle due to rounding
// For example, suppose times from a MIDI file are exact, but in
// decimal round to TW0.4167 Q0.3333. Since the time in whole notes
// rounded up, this note will start late. Even though the duration
// rounded down, the amount is 1/4 as much because units are quarter
// notes. Therefore, the total roundup is 0.0001 beats. This is
// enough to cause the note to sort later in the queue, perhaps
// coming after a new note-on on the same pitch, and resulting in
// a turning on-off, on-off into on, on, off, off if data is moved
// to Allegro (ascii) format with rounding and then back to SMF.
//
// The solution here is to consider things that round to the same
// tick to be simultaneous. Then, be sure to deal with note-offs
// before note-ons. We're going to do that by using event_queue
// times that are rounded to the nearest tick time. Except note-offs
// are going to go in with times that are 1/4 tick earlier so they
// get scheduled first, but still end up on the same tick.
//
event_queue* push(event_queue *queue, event_queue *event)
{
// printf("push: %.6g, %c, %d\n", event->time, event->type, event->index);
if (queue == NULL) {
event->next = NULL;
return event;
}
event_queue *marker1 = NULL;
event_queue *marker2 = queue;
while (marker2 != NULL && marker2->time <= event->time) {
marker1 = marker2;
marker2 = marker2->next;
}
event->next = marker2;
if (marker1 != NULL) {
marker1->next=event;
return queue;
} else return event;
}
void print_queue(event_queue *q)
{
printf("Printing queue. . .\n");
event_queue *q2=q;
while (q2) {
printf("%c at %f ;", q2->type, q2->time);
q2 = q2->next;
}
printf("\nDone printing.\n");
}
void Alg_smf_write::write_note(Alg_note_ptr note, bool on)
{
double event_time = (on ? note->time : note->time + note->dur);
write_delta(event_time);
//printf("deltaDivisions: %d, beats elapsed: %g, on? %c\n", deltaDivisions, note->time, on);
char chan = char(note->chan & 15);
int pitch = int(note->pitch + 0.5);
if (pitch < 0) {
pitch = pitch % 12;
} else if (pitch > 127) {
pitch = (pitch % 12) + 120; // put pitch in 10th octave
if (pitch > 127) pitch -= 12; // or 9th octave
}
out_file->put(0x90 + chan);
out_file->put(pitch);
if (on) {
int vel = (int) note->loud;
if (vel <= 0) vel = 1;
write_data(vel);
} else out_file->put(0); // note-off indicated by velocty zero
}
void Alg_smf_write::write_midi_channel_prefix(Alg_update_ptr update)
{
if (update->chan >= 0) { // write MIDI Channel Prefix
write_delta(update->time);
out_file->put('\xFF'); // Meta Event
out_file->put('\x20'); // Type code for MIDI Channel Prefix
out_file->put(1); // length
out_file->put(to_midi_channel(update->chan));
// one thing odd about the Std MIDI File spec is that once
// you turn on MIDI Channel Prefix, there seems to be no
// way to cancel it unless a non-Meta event shows up. We
// don't do any analysis to avoid assigning channels to
// meta events.
}
}
void Alg_smf_write::write_text(Alg_update_ptr update, char type)
{
write_midi_channel_prefix(update);
write_delta(update->time);
out_file->put('\xFF');
out_file->put(type);
out_file->put((char) strlen(update->parameter.s));
*out_file << update->parameter.s;
}
void Alg_smf_write::write_smpteoffset(Alg_update_ptr update, char *s)
{
write_midi_channel_prefix(update);
write_delta(update->time);
out_file->put('\xFF'); // meta event
out_file->put('\x54'); // smpte offset type code
out_file->put(5); // length
for (int i = 0; i < 5; i++) *out_file << s[i];
}
// write_data - limit data to the range of [0...127] and write it
void Alg_smf_write::write_data(int data)
{
if (data < 0) data = 0;
else if (data > 0x7F) data = 0x7F;
out_file->put(data);
}
int Alg_smf_write::to_midi_channel(int channel)
{
// allegro track number is stored as multiple of 100
// also mask off all but 4 channel bits just in case
if (channels_per_track > 0) channel %= channels_per_track;
return channel & 0xF;
}
int Alg_smf_write::to_track(int channel)
{
if (channel == -1) return 0;
return channel / channels_per_track;
}
static char hex_to_nibble(char c)
{
if (isalpha(c)) {
return 10 + (toupper(c) - 'A');
} else {
return c - '0';
}
}
static char hex_to_char(const char *s)
{
return (hex_to_nibble(s[0]) << 4) + hex_to_nibble(s[1]);
}
void Alg_smf_write::write_binary(int type_byte, const char *msg)
{
int len = strlen(msg) / 2;
out_file->put(type_byte);
write_varinum(len);
for (int i = 0; i < len; i++) {
out_file->put(hex_to_char(msg));
msg += 2;
}
}
void Alg_smf_write::write_update(Alg_update_ptr update)
{
const char *name = update->parameter.attr_name();
/****Non-Meta Events****/
if (!strcmp(name, "pressurer")) {
write_delta(update->time);
if (update->get_identifier() < 0) { // channel pressure message
out_file->put(0xD0 + to_midi_channel(update->chan));
write_data((int)(update->parameter.r * 127));
} else { // just 1 key -- poly pressure
out_file->put(0xA0 + to_midi_channel(update->chan));
write_data(update->get_identifier());
write_data((int)(update->parameter.r * 127));
}
} else if (!strcmp(name, "programi")) {
write_delta(update->time);
out_file->put(0xC0 + to_midi_channel(update->chan));
write_data(update->parameter.i);
} else if (!strcmp(name, "bendr")) {
int temp = ROUND(0x2000 * (update->parameter.r + 1));
if (temp > 0x3fff) temp = 0x3fff; // 14 bits maximum
if (temp < 0) temp = 0;
int c1 = temp & 0x7F; // low 7 bits
int c2 = temp >> 7; // high 7 bits
write_delta(update->time);
out_file->put(0xE0 + to_midi_channel(update->chan));
write_data(c1);
write_data(c2);
} else if (!strncmp(name, "control", 7) &&
update->parameter.attr_type() == 'r') {
int ctrlnum = atoi(name + 7);
int val = ROUND(update->parameter.r * 127);
write_delta(update->time);
out_file->put(0xB0 + to_midi_channel(update->chan));
write_data(ctrlnum);
write_data(val);
} else if (!strcmp(name, "sysexs") &&
update->parameter.attr_type() == 's') {
const char *s = update->parameter.s;
if (s[0] && s[1] && toupper(s[0]) == 'F' && s[1] == '0') {
s += 2; // skip the initial "F0" byte in message: it is implied
}
write_delta(update->time);
write_binary(0xF0, s);
} else if (!strcmp(name, "sqspecifics") &&
update->parameter.attr_type() == 's') {
const char *s = update->parameter.s;
write_delta(update->time);
out_file->put('\xFF');
write_binary(0x7F, s);
/****Text Events****/
} else if (!strcmp(name, "texts")) {
write_text(update, 0x01);
} else if (!strcmp(name, "copyrights")) {
write_text(update, 0x02);
} else if (!strcmp(name, "seqnames") || !strcmp(name, "tracknames")) {
write_text(update, 0x03);
} else if (!strcmp(name, "instruments")) {
write_text(update, 0x04);
} else if (!strcmp(name, "lyrics")) {
write_text(update, 0x05);
} else if (!strcmp(name, "markers")) {
write_text(update, 0x06);
} else if (!strcmp(name, "cues")) {
write_text(update, 0x07);
} else if (!strcmp(name, "miscs")) {
write_text(update, 0x08);
/****Other Events****/
} else if (!strcmp(name, "smpteoffsets")) {
#define decimal(p) (((p)[0] - '0') * 10 + ((p)[1] - '0'))
// smpteoffset is specified as "24fps:00h:10m:00s:11.00f"
// the following simple parser does not reject all badly
// formatted strings, but it should parse good strings ok
const char *s = update->parameter.s;
int len = strlen(s);
char smpteoffset[5];
if (len < 24) return; // not long enough, must be bad format
int fps;
if (s[0] == '2') {
if (s[1] == '4') fps = 0;
else if (s[1] == '5') fps = 1;
else if (s[1] == '9') {
fps = 2;
if (len != 27) return; // not right length
s += 3; // cancel effect of longer string
}
} else fps = 3;
s += 6; int hours = decimal(s);
s += 4; int mins = decimal(s);
s += 4; int secs = decimal(s);
s += 4; int frames = decimal(s);
s += 3; int subframes = decimal(s);
smpteoffset[0] = (fps << 6) + hours;
smpteoffset[1] = mins;
smpteoffset[2] = secs;
smpteoffset[3] = frames;
smpteoffset[4] = subframes;
write_smpteoffset(update, smpteoffset);
// key signature is special because it takes two events in the Alg_seq
// structure to make one midi file event. When we encounter one or
// the other event, we'll just record it in the Alg_smf_write object.
// After both events are seen, we write the data. (See below.)
} else if (!strcmp(name, "keysigi")) {
keysig = update->parameter.i;
keysig_when = update->time;
} else if (!strcmp(name, "modea")) {
if (!strcmp(alg_attr_name(update->parameter.a), "major"))
keysig_mode = 'M';
else keysig_mode = 'm';
keysig_when = update->time;
}
if (keysig != -99 && keysig_mode) { // write when both are defined
write_delta(keysig_when);
out_file->put('\xFF');
out_file->put('\x59');
out_file->put(2);
// mask off high bits so that this value appears to be positive
// i.e. -1 -> 0xFF (otherwise, write_data will clip -1 to 0)
out_file->put(keysig & 0xFF);
out_file->put(keysig_mode == 'm');
keysig = -99;
keysig_mode = false;
}
//printf("Update: %s, key: %g\n", update->parameter.attr_name(), update->key);
}
// see notes on event_queue::push, TICK_TIME converts from beat to
// the number of the nearest tick. The second parameter is an offset in
// quarter ticks. By scheduling with -1, note-offs should get dispatched
// first. Note that TICK_TIME only determines the order of events, so
// it is ok to change units from beats to ticks, saving a divide.
#define TICK_TIME(t, o) (ROUND((t) * division) + 0.25 * (o))
void Alg_smf_write::write_track(int i)
{
int j = 0; // note index
Alg_events &notes = seq->track_list[i];
event_queue *pending = NULL;
if (notes.length() > 0) {
pending = new event_queue('n', TICK_TIME(notes[j]->time, 0), 0, NULL);
}
if (i == 0) { // track 0 may have tempo and timesig info
if (seq->get_time_map()->last_tempo_flag || seq->get_time_map()->beats.len > 0) {
pending = push(pending, new event_queue('c', 0.0, 0, NULL));
}
if (seq->time_sig.length() > 0) {
pending = push(pending, new event_queue('s',
TICK_TIME(seq->time_sig[0].beat, 0), 0, NULL));
}
}
while (pending) {
event_queue *current = pending;
pending = pending->next;
if (current->type == 'n') {
Alg_note_ptr n = (Alg_note_ptr) notes[current->index];
if (n->is_note()) {
write_note(n, true);
pending = push(pending, new event_queue('o',
TICK_TIME(n->time + n->dur, -1), current->index, NULL));
} else if (n->is_update()) {
Alg_update_ptr u = (Alg_update_ptr) n;
write_update(u);
}
int next = current->index + 1;
if (next < notes.length()) {
current->time = TICK_TIME(notes[next]->time, 0);
current->index = next;
pending = push(pending, current);
}
} else if (current->type == 'o') { //note-off
Alg_note_ptr n = (Alg_note_ptr) notes[current->index];
write_note(n, false);
delete current;
} else if (current->type == 'c') { // tempo change
write_tempo_change(current->index);
current->index++; // -R
if (current->index < seq->get_time_map()->beats.len) {
current->time =
TICK_TIME(seq->get_time_map()->
beats[current->index].beat, 0);
pending = push(pending, current);
} else {
delete current;
}
} else if (current->type == 's') { // time sig
write_time_signature(current->index);
current->index++;
if (current->index < seq->time_sig.length()) {
current->time =
TICK_TIME(seq->time_sig[current->index].beat, 0);
pending = push(pending, current);
} else {
delete current;
}
}
}
}
void Alg_smf_write::write_tempo(int divs, int tempo)
{
// printf("Inserting tempo %f after %f clocks.\n", tempo, delta);
write_varinum(divs - previous_divs);
previous_divs = divs;
out_file->put('\xFF');
out_file->put('\x51');
out_file->put('\x03');
write_24bit((int)tempo);
}
void Alg_smf_write::write_tempo_change(int i)
// i is index of tempo map
{
// extract tempo map
Alg_beats &b = seq->get_time_map()->beats;
double tempo;
long divs;
if (i < seq->get_time_map()->beats.len - 1) {
tempo = 1000000 * ((b[i+1].time - b[i].time) /
(b[i+1].beat - b[i].beat));
divs = ROUND(b[i].beat * division);
write_tempo(divs, ROUND(tempo));
} else if (seq->get_time_map()->last_tempo_flag) { // write the final tempo
divs = ROUND(division * b[i].beat);
tempo = (1000000.0 / seq->get_time_map()->last_tempo);
write_tempo(divs, ROUND(tempo));
}
}
void Alg_smf_write::write_time_signature(int i)
{
Alg_time_sigs &ts = seq->time_sig;
write_delta(ts[i].beat);
// write the time signature
out_file->put('\xFF');
out_file->put('\x58'); // time signature
out_file->put('\x04'); // length of message
out_file->put(ROUND(ts[i].num));
int den = ROUND(ts[i].den);
int den_byte = 0;
while (den > 1) { // compute the log2 of denominator
den_byte++;
den >>= 1;
}
out_file->put(den_byte);
out_file->put(24); // clocks per quarter
out_file->put(8); // 32nd notes per 24 clocks
}
void Alg_smf_write::write(ostream &file)
{
int track_len_offset;
int track_end_offset;
int track_len;
out_file = &file;
// Header
file << "MThd";
write_32bit(6); // chunk length
write_16bit(1); // format 1 MIDI file
write_16bit(seq->tracks()); // number of tracks
write_16bit(division); // divisions per quarter note
// write_ all tracks
seq->convert_to_beats();
int i;
for (i = 0; i < seq->tracks(); i++) {
previous_divs = 0;
*out_file << "MTrk";
track_len_offset = out_file->tellp();
write_32bit(0); // track len placeholder
write_track(i);
// End of track event
write_varinum(0); // delta time
out_file->put('\xFF');
out_file->put('\x2F');
out_file->put('\x00');
// Go back and write in the length of the track
track_end_offset = out_file->tellp();
track_len = track_end_offset - track_len_offset - 4;
out_file->seekp(track_len_offset);
write_32bit(track_len);
out_file->seekp(track_end_offset);
}
}
void Alg_smf_write::write_16bit(int num)
{
out_file->put((num & 0xFF00) >> 8);
out_file->put(num & 0xFF);
}
void Alg_smf_write::write_24bit(int num)
{
out_file->put((num & 0xFF0000) >> 16);
out_file->put((num & 0xFF00) >> 8);
out_file->put((num & 0xFF));
}
void Alg_smf_write::write_32bit(int num)
{
out_file->put((num & 0xFF000000) >> 24);
out_file->put((num & 0xFF0000) >> 16);
out_file->put((num & 0xFF00) >> 8);
out_file->put((num & 0xFF));
}
void Alg_smf_write::write_delta(double event_time)
{
// divisions is ideal absolute time in divisions
long divisions = ROUND(division * event_time);
long delta_divs = divisions - previous_divs;
write_varinum(delta_divs);
previous_divs = divisions;
}
void Alg_smf_write::write_varinum(int value)
{
if(value<0) value=0;//this line should not have to be here!
int buffer;
buffer = value & 0x7f;
while ((value >>= 7) > 0) {
buffer <<= 8;
buffer |= 0x80;
buffer += (value & 0x7f);
}
for(;;) {
out_file->put(buffer);
if (buffer & 0x80)
buffer >>= 8;
else
break;
}
}
void Alg_seq::smf_write(ostream &file)
{
Alg_smf_write writer(this);
writer.write(file);
}
bool Alg_seq::smf_write(const char *filename)
{
ofstream outf(filename, ios::binary | ios::out);
if (outf.fail()) return false;
smf_write(outf);
outf.close();
return true;
}