mirror of
https://github.com/cookiengineer/audacity
synced 2025-06-16 16:10:06 +02:00
607 lines
19 KiB
C
607 lines
19 KiB
C
#include "stdio.h"
|
|
#ifndef mips
|
|
#include "stdlib.h"
|
|
#endif
|
|
#include "xlisp.h"
|
|
#include "sound.h"
|
|
|
|
#include "falloc.h"
|
|
#include "cext.h"
|
|
#include "fmfbv.h"
|
|
|
|
void fmfbv_free();
|
|
|
|
|
|
typedef struct fmfbv_susp_struct {
|
|
snd_susp_node susp;
|
|
boolean started;
|
|
long terminate_cnt;
|
|
boolean logically_stopped;
|
|
sound_type index;
|
|
long index_cnt;
|
|
sample_block_values_type index_ptr;
|
|
|
|
/* support for interpolation of index */
|
|
sample_type index_x1_sample;
|
|
double index_pHaSe;
|
|
double index_pHaSe_iNcR;
|
|
|
|
/* support for ramp between samples of index */
|
|
double output_per_index;
|
|
long index_n;
|
|
|
|
double yy;
|
|
double sin_y;
|
|
double phase;
|
|
double ph_incr;
|
|
} fmfbv_susp_node, *fmfbv_susp_type;
|
|
|
|
|
|
void fmfbv_n_fetch(register fmfbv_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double yy_reg;
|
|
register double sin_y_reg;
|
|
register double phase_reg;
|
|
register double ph_incr_reg;
|
|
register sample_block_values_type index_ptr_reg;
|
|
falloc_sample_block(out, "fmfbv_n_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the index input sample block: */
|
|
susp_check_term_log_samples(index, index_ptr, index_cnt);
|
|
togo = min(togo, susp->index_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
yy_reg = susp->yy;
|
|
sin_y_reg = susp->sin_y;
|
|
phase_reg = susp->phase;
|
|
ph_incr_reg = susp->ph_incr;
|
|
index_ptr_reg = susp->index_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
phase_reg += ph_incr_reg;
|
|
if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* PHASE is incremented and INDEX scaled to table INDEX, and
|
|
sin_y_reg is a signal (-1 to +1) */
|
|
yy_reg = phase_reg + *index_ptr_reg++ * sin_y_reg;
|
|
/* so yy_reg is a table index */
|
|
while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN;
|
|
while (yy_reg < 0) yy_reg += SINE_TABLE_LEN;
|
|
sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */
|
|
/* sin_y_reg is now a signal not ready for table lookup */
|
|
*out_ptr_reg++ = sin_y_reg;;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->yy = yy_reg;
|
|
susp->sin_y = sin_y_reg;
|
|
susp->phase = phase_reg;
|
|
/* using index_ptr_reg is a bad idea on RS/6000: */
|
|
susp->index_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(index_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* fmfbv_n_fetch */
|
|
|
|
|
|
void fmfbv_s_fetch(register fmfbv_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double yy_reg;
|
|
register double sin_y_reg;
|
|
register double phase_reg;
|
|
register double ph_incr_reg;
|
|
register sample_type index_scale_reg = susp->index->scale;
|
|
register sample_block_values_type index_ptr_reg;
|
|
falloc_sample_block(out, "fmfbv_s_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the index input sample block: */
|
|
susp_check_term_log_samples(index, index_ptr, index_cnt);
|
|
togo = min(togo, susp->index_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
yy_reg = susp->yy;
|
|
sin_y_reg = susp->sin_y;
|
|
phase_reg = susp->phase;
|
|
ph_incr_reg = susp->ph_incr;
|
|
index_ptr_reg = susp->index_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
phase_reg += ph_incr_reg;
|
|
if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* PHASE is incremented and INDEX scaled to table INDEX, and
|
|
sin_y_reg is a signal (-1 to +1) */
|
|
yy_reg = phase_reg + (index_scale_reg * *index_ptr_reg++) * sin_y_reg;
|
|
/* so yy_reg is a table index */
|
|
while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN;
|
|
while (yy_reg < 0) yy_reg += SINE_TABLE_LEN;
|
|
sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */
|
|
/* sin_y_reg is now a signal not ready for table lookup */
|
|
*out_ptr_reg++ = sin_y_reg;;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->yy = yy_reg;
|
|
susp->sin_y = sin_y_reg;
|
|
susp->phase = phase_reg;
|
|
/* using index_ptr_reg is a bad idea on RS/6000: */
|
|
susp->index_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(index_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* fmfbv_s_fetch */
|
|
|
|
|
|
void fmfbv_i_fetch(register fmfbv_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double yy_reg;
|
|
register double sin_y_reg;
|
|
register double phase_reg;
|
|
register double ph_incr_reg;
|
|
register double index_pHaSe_iNcR_rEg = susp->index_pHaSe_iNcR;
|
|
register double index_pHaSe_ReG;
|
|
register sample_type index_x1_sample_reg;
|
|
falloc_sample_block(out, "fmfbv_i_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp_check_term_log_samples(index, index_ptr, index_cnt);
|
|
susp->index_x1_sample = susp_fetch_sample(index, index_ptr, index_cnt);
|
|
}
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
yy_reg = susp->yy;
|
|
sin_y_reg = susp->sin_y;
|
|
phase_reg = susp->phase;
|
|
ph_incr_reg = susp->ph_incr;
|
|
index_pHaSe_ReG = susp->index_pHaSe;
|
|
index_x1_sample_reg = susp->index_x1_sample;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
if (index_pHaSe_ReG >= 1.0) {
|
|
/* fixup-depends index */
|
|
/* pick up next sample as index_x1_sample: */
|
|
susp->index_ptr++;
|
|
susp_took(index_cnt, 1);
|
|
index_pHaSe_ReG -= 1.0;
|
|
susp_check_term_log_samples_break(index, index_ptr, index_cnt, index_x1_sample_reg);
|
|
index_x1_sample_reg = susp_current_sample(index, index_ptr);
|
|
}
|
|
phase_reg += ph_incr_reg;
|
|
if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* PHASE is incremented and INDEX scaled to table INDEX, and
|
|
sin_y_reg is a signal (-1 to +1) */
|
|
yy_reg = phase_reg + index_x1_sample_reg * sin_y_reg;
|
|
/* so yy_reg is a table index */
|
|
while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN;
|
|
while (yy_reg < 0) yy_reg += SINE_TABLE_LEN;
|
|
sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */
|
|
/* sin_y_reg is now a signal not ready for table lookup */
|
|
*out_ptr_reg++ = sin_y_reg;;
|
|
index_pHaSe_ReG += index_pHaSe_iNcR_rEg;
|
|
} while (--n); /* inner loop */
|
|
|
|
togo -= n;
|
|
susp->yy = yy_reg;
|
|
susp->sin_y = sin_y_reg;
|
|
susp->phase = phase_reg;
|
|
susp->index_pHaSe = index_pHaSe_ReG;
|
|
susp->index_x1_sample = index_x1_sample_reg;
|
|
out_ptr += togo;
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* fmfbv_i_fetch */
|
|
|
|
|
|
void fmfbv_r_fetch(register fmfbv_susp_type susp, snd_list_type snd_list)
|
|
{
|
|
int cnt = 0; /* how many samples computed */
|
|
sample_type index_val;
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double yy_reg;
|
|
register double sin_y_reg;
|
|
register double phase_reg;
|
|
register double ph_incr_reg;
|
|
falloc_sample_block(out, "fmfbv_r_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp->index_pHaSe = 1.0;
|
|
}
|
|
|
|
susp_check_term_log_samples(index, index_ptr, index_cnt);
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* grab next index_x1_sample when phase goes past 1.0; */
|
|
/* use index_n (computed below) to avoid roundoff errors: */
|
|
if (susp->index_n <= 0) {
|
|
susp_check_term_log_samples(index, index_ptr, index_cnt);
|
|
susp->index_x1_sample = susp_fetch_sample(index, index_ptr, index_cnt);
|
|
susp->index_pHaSe -= 1.0;
|
|
/* index_n gets number of samples before phase exceeds 1.0: */
|
|
susp->index_n = (long) ((1.0 - susp->index_pHaSe) *
|
|
susp->output_per_index);
|
|
}
|
|
togo = min(togo, susp->index_n);
|
|
index_val = susp->index_x1_sample;
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
yy_reg = susp->yy;
|
|
sin_y_reg = susp->sin_y;
|
|
phase_reg = susp->phase;
|
|
ph_incr_reg = susp->ph_incr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
phase_reg += ph_incr_reg;
|
|
if (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
|
|
/* PHASE is incremented and INDEX scaled to table INDEX, and
|
|
sin_y_reg is a signal (-1 to +1) */
|
|
yy_reg = phase_reg + index_val * sin_y_reg;
|
|
/* so yy_reg is a table index */
|
|
while (yy_reg > SINE_TABLE_LEN) yy_reg -= SINE_TABLE_LEN;
|
|
while (yy_reg < 0) yy_reg += SINE_TABLE_LEN;
|
|
sin_y_reg = sine_table[(int) yy_reg]; /* truncation gets valid index */
|
|
/* sin_y_reg is now a signal not ready for table lookup */
|
|
*out_ptr_reg++ = sin_y_reg;;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->yy = yy_reg;
|
|
susp->sin_y = sin_y_reg;
|
|
susp->phase = phase_reg;
|
|
out_ptr += togo;
|
|
susp->index_pHaSe += togo * susp->index_pHaSe_iNcR;
|
|
susp->index_n -= togo;
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* fmfbv_r_fetch */
|
|
|
|
|
|
void fmfbv_toss_fetch(susp, snd_list)
|
|
register fmfbv_susp_type susp;
|
|
snd_list_type snd_list;
|
|
{
|
|
long final_count = susp->susp.toss_cnt;
|
|
time_type final_time = susp->susp.t0;
|
|
long n;
|
|
|
|
/* fetch samples from index up to final_time for this block of zeros */
|
|
while ((round((final_time - susp->index->t0) * susp->index->sr)) >=
|
|
susp->index->current)
|
|
susp_get_samples(index, index_ptr, index_cnt);
|
|
/* convert to normal processing when we hit final_count */
|
|
/* we want each signal positioned at final_time */
|
|
n = round((final_time - susp->index->t0) * susp->index->sr -
|
|
(susp->index->current - susp->index_cnt));
|
|
susp->index_ptr += n;
|
|
susp_took(index_cnt, n);
|
|
susp->susp.fetch = susp->susp.keep_fetch;
|
|
(*(susp->susp.fetch))(susp, snd_list);
|
|
}
|
|
|
|
|
|
void fmfbv_mark(fmfbv_susp_type susp)
|
|
{
|
|
sound_xlmark(susp->index);
|
|
}
|
|
|
|
|
|
void fmfbv_free(fmfbv_susp_type susp)
|
|
{
|
|
sound_unref(susp->index);
|
|
ffree_generic(susp, sizeof(fmfbv_susp_node), "fmfbv_free");
|
|
}
|
|
|
|
|
|
void fmfbv_print_tree(fmfbv_susp_type susp, int n)
|
|
{
|
|
indent(n);
|
|
stdputstr("index:");
|
|
sound_print_tree_1(susp->index, n);
|
|
}
|
|
|
|
|
|
sound_type snd_make_fmfbv(time_type t0, double hz, rate_type sr, sound_type index)
|
|
{
|
|
register fmfbv_susp_type susp;
|
|
/* sr specified as input parameter */
|
|
/* t0 specified as input parameter */
|
|
int interp_desc = 0;
|
|
sample_type scale_factor = 1.0F;
|
|
time_type t0_min = t0;
|
|
falloc_generic(susp, fmfbv_susp_node, "snd_make_fmfbv");
|
|
susp->yy = 0.0;
|
|
susp->sin_y = 0.0;
|
|
susp->phase = 0.0;
|
|
susp->ph_incr = hz * SINE_TABLE_LEN / sr;
|
|
index->scale *= SINE_TABLE_LEN / PI2
|
|
;
|
|
|
|
/* select a susp fn based on sample rates */
|
|
interp_desc = (interp_desc << 2) + interp_style(index, sr);
|
|
switch (interp_desc) {
|
|
case INTERP_n: susp->susp.fetch = fmfbv_n_fetch; break;
|
|
case INTERP_s: susp->susp.fetch = fmfbv_s_fetch; break;
|
|
case INTERP_i: susp->susp.fetch = fmfbv_i_fetch; break;
|
|
case INTERP_r: susp->susp.fetch = fmfbv_r_fetch; break;
|
|
default: snd_badsr(); break;
|
|
}
|
|
|
|
susp->terminate_cnt = UNKNOWN;
|
|
/* handle unequal start times, if any */
|
|
if (t0 < index->t0) sound_prepend_zeros(index, t0);
|
|
/* minimum start time over all inputs: */
|
|
t0_min = min(index->t0, t0);
|
|
/* how many samples to toss before t0: */
|
|
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
|
|
if (susp->susp.toss_cnt > 0) {
|
|
susp->susp.keep_fetch = susp->susp.fetch;
|
|
susp->susp.fetch = fmfbv_toss_fetch;
|
|
}
|
|
|
|
/* initialize susp state */
|
|
susp->susp.free = fmfbv_free;
|
|
susp->susp.sr = sr;
|
|
susp->susp.t0 = t0;
|
|
susp->susp.mark = fmfbv_mark;
|
|
susp->susp.print_tree = fmfbv_print_tree;
|
|
susp->susp.name = "fmfbv";
|
|
susp->logically_stopped = false;
|
|
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(index);
|
|
susp->started = false;
|
|
susp->susp.current = 0;
|
|
susp->index = index;
|
|
susp->index_cnt = 0;
|
|
susp->index_pHaSe = 0.0;
|
|
susp->index_pHaSe_iNcR = index->sr / sr;
|
|
susp->index_n = 0;
|
|
susp->output_per_index = sr / index->sr;
|
|
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
|
|
}
|
|
|
|
|
|
sound_type snd_fmfbv(time_type t0, double hz, rate_type sr, sound_type index)
|
|
{
|
|
sound_type index_copy = sound_copy(index);
|
|
return snd_make_fmfbv(t0, hz, sr, index_copy);
|
|
}
|