1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-06-16 08:09:32 +02:00
2010-01-24 09:19:39 +00:00

301 lines
9.1 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "delaycv.h"
void delaycv_free();
typedef struct delaycv_susp_struct {
snd_susp_node susp;
long terminate_cnt;
sound_type s;
long s_cnt;
sample_block_values_type s_ptr;
sound_type feedback;
long feedback_cnt;
sample_block_values_type feedback_ptr;
long delaylen;
sample_type *delaybuf;
sample_type *delayptr;
sample_type *endptr;
} delaycv_susp_node, *delaycv_susp_type;
void delaycv_nn_fetch(register delaycv_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_type * delayptr_reg;
register sample_type * endptr_reg;
register sample_block_values_type feedback_ptr_reg;
register sample_block_values_type s_ptr_reg;
falloc_sample_block(out, "delaycv_nn_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s input sample block: */
susp_check_term_samples(s, s_ptr, s_cnt);
togo = min(togo, susp->s_cnt);
/* don't run past the feedback input sample block: */
susp_check_samples(feedback, feedback_ptr, feedback_cnt);
togo = min(togo, susp->feedback_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
n = togo;
delayptr_reg = susp->delayptr;
endptr_reg = susp->endptr;
feedback_ptr_reg = susp->feedback_ptr;
s_ptr_reg = susp->s_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = *delayptr_reg;
*delayptr_reg = *delayptr_reg * *feedback_ptr_reg++ + *s_ptr_reg++;
if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;;
} while (--n); /* inner loop */
susp->delayptr = delayptr_reg;
susp->endptr = endptr_reg;
/* using feedback_ptr_reg is a bad idea on RS/6000: */
susp->feedback_ptr += togo;
/* using s_ptr_reg is a bad idea on RS/6000: */
susp->s_ptr += togo;
out_ptr += togo;
susp_took(s_cnt, togo);
susp_took(feedback_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
} /* delaycv_nn_fetch */
void delaycv_ns_fetch(register delaycv_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_type * delayptr_reg;
register sample_type * endptr_reg;
register sample_type feedback_scale_reg = susp->feedback->scale;
register sample_block_values_type feedback_ptr_reg;
register sample_block_values_type s_ptr_reg;
falloc_sample_block(out, "delaycv_ns_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s input sample block: */
susp_check_term_samples(s, s_ptr, s_cnt);
togo = min(togo, susp->s_cnt);
/* don't run past the feedback input sample block: */
susp_check_samples(feedback, feedback_ptr, feedback_cnt);
togo = min(togo, susp->feedback_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
n = togo;
delayptr_reg = susp->delayptr;
endptr_reg = susp->endptr;
feedback_ptr_reg = susp->feedback_ptr;
s_ptr_reg = susp->s_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = *delayptr_reg;
*delayptr_reg = *delayptr_reg * (feedback_scale_reg * *feedback_ptr_reg++) + *s_ptr_reg++;
if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;;
} while (--n); /* inner loop */
susp->delayptr = delayptr_reg;
susp->endptr = endptr_reg;
/* using feedback_ptr_reg is a bad idea on RS/6000: */
susp->feedback_ptr += togo;
/* using s_ptr_reg is a bad idea on RS/6000: */
susp->s_ptr += togo;
out_ptr += togo;
susp_took(s_cnt, togo);
susp_took(feedback_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
} /* delaycv_ns_fetch */
void delaycv_toss_fetch(susp, snd_list)
register delaycv_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from s up to final_time for this block of zeros */
while ((round((final_time - susp->s->t0) * susp->s->sr)) >=
susp->s->current)
susp_get_samples(s, s_ptr, s_cnt);
/* fetch samples from feedback up to final_time for this block of zeros */
while ((round((final_time - susp->feedback->t0) * susp->feedback->sr)) >=
susp->feedback->current)
susp_get_samples(feedback, feedback_ptr, feedback_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->s->t0) * susp->s->sr -
(susp->s->current - susp->s_cnt));
susp->s_ptr += n;
susp_took(s_cnt, n);
n = round((final_time - susp->feedback->t0) * susp->feedback->sr -
(susp->feedback->current - susp->feedback_cnt));
susp->feedback_ptr += n;
susp_took(feedback_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void delaycv_mark(delaycv_susp_type susp)
{
sound_xlmark(susp->s);
sound_xlmark(susp->feedback);
}
void delaycv_free(delaycv_susp_type susp)
{
free(susp->delaybuf); sound_unref(susp->s);
sound_unref(susp->feedback);
ffree_generic(susp, sizeof(delaycv_susp_node), "delaycv_free");
}
void delaycv_print_tree(delaycv_susp_type susp, int n)
{
indent(n);
stdputstr("s:");
sound_print_tree_1(susp->s, n);
indent(n);
stdputstr("feedback:");
sound_print_tree_1(susp->feedback, n);
}
sound_type snd_make_delaycv(sound_type s, time_type delay, sound_type feedback)
{
register delaycv_susp_type susp;
rate_type sr = max(s->sr, feedback->sr);
time_type t0 = max(s->t0, feedback->t0);
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
/* combine scale factors of linear inputs (S) */
scale_factor *= s->scale;
s->scale = 1.0F;
/* try to push scale_factor back to a low sr input */
if (s->sr < sr) { s->scale = scale_factor; scale_factor = 1.0F; }
falloc_generic(susp, delaycv_susp_node, "snd_make_delaycv");
susp->delaylen = round(s->sr * delay);
susp->delaybuf = (sample_type *) calloc (sizeof(double), susp->delaylen);
susp->delayptr = susp->delaybuf;
susp->endptr = susp->delaybuf + susp->delaylen;
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(s, sr);
interp_desc = (interp_desc << 2) + interp_style(feedback, sr);
switch (interp_desc) {
case INTERP_nn: susp->susp.fetch = delaycv_nn_fetch; break;
case INTERP_ns: susp->susp.fetch = delaycv_ns_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s->t0) sound_prepend_zeros(s, t0);
if (t0 < feedback->t0) sound_prepend_zeros(feedback, t0);
/* minimum start time over all inputs: */
t0_min = min(s->t0, min(feedback->t0, t0));
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = delaycv_toss_fetch;
}
/* initialize susp state */
susp->susp.free = delaycv_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = delaycv_mark;
susp->susp.print_tree = delaycv_print_tree;
susp->susp.name = "delaycv";
susp->susp.log_stop_cnt = UNKNOWN;
susp->susp.current = 0;
susp->s = s;
susp->s_cnt = 0;
susp->feedback = feedback;
susp->feedback_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_delaycv(sound_type s, time_type delay, sound_type feedback)
{
sound_type s_copy = sound_copy(s);
sound_type feedback_copy = sound_copy(feedback);
return snd_make_delaycv(s_copy, delay, feedback_copy);
}