1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-04-30 23:59:41 +02:00
2013-10-24 04:32:13 +00:00

650 lines
21 KiB
C

/*
* TwoLAME: an optimized MPEG Audio Layer Two encoder
*
* Copyright (C) 2001-2004 Michael Cheng
* Copyright (C) 2004-2006 The TwoLAME Project
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id$
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "twolame.h"
#include "common.h"
#include "mem.h"
#include "fft.h"
#include "psycho_1.h"
/**********************************************************************
This module implements the psychoacoustic model I for the
MPEG encoder layer II. It uses simplified tonal and noise masking
threshold analysis to generate SMR for the encoder bit allocation
routine.
**********************************************************************/
static int *psycho_1_read_cbound(int lay, int freq, int *crit_band)
/* this function reads in critical band boundaries */
{
#include "psycho_1_critband.h"
int *cbound;
int i, k;
if ((lay < 1) || (lay > 2)) {
fprintf(stderr, "Internal error (read_cbound())\n");
return (NULL);
}
if ((freq < 0) || (freq > 6) || (freq == 3)) {
fprintf(stderr, "Internal error (read_cbound())\n");
return (NULL);
}
*crit_band = SecondCriticalBand[freq][0];
cbound = (int *) TWOLAME_MALLOC(sizeof(int) * *crit_band);
for (i = 0; i < *crit_band; i++) {
k = SecondCriticalBand[freq][i + 1];
if (k != 0) {
cbound[i] = k;
} else {
fprintf(stderr, "Internal error (read_cbound())\n");
return (NULL);
}
}
return (cbound);
}
/* reads in the frequency bands and bark values */
static void psycho_1_read_freq_band(g_ptr * ltg, int lay, int freq, int *sub_size)
{
#include "psycho_1_freqtable.h"
int i, k;
if ((freq < 0) || (freq > 6) || (freq == 3)) {
fprintf(stderr, "Internal error (read_freq_band())\n");
return;
}
/* read input for freq. subbands */
*sub_size = SecondFreqEntries[freq] + 1;
*ltg = (g_ptr) TWOLAME_MALLOC(sizeof(g_thres) * *sub_size);
(*ltg)[0].line = 0; /* initialize global masking threshold */
(*ltg)[0].bark = 0.0;
(*ltg)[0].hear = 0.0;
for (i = 1; i < *sub_size; i++) {
k = SecondFreqSubband[freq][i - 1].line;
if (k != 0) {
(*ltg)[i].line = k;
(*ltg)[i].bark = SecondFreqSubband[freq][i - 1].bark;
(*ltg)[i].hear = SecondFreqSubband[freq][i - 1].hear;
} else {
fprintf(stderr, "Internal error (read_freq_band())\n");
return;
}
}
}
static void psycho_1_make_map(int sub_size, mask power[HAN_SIZE], g_thres * ltg)
/* this function calculates the global masking threshold */
{
int i, j;
for (i = 1; i < sub_size; i++)
for (j = ltg[i - 1].line; j <= ltg[i].line; j++)
power[j].map = i;
}
static void psycho_1_init_add_db(psycho_1_mem * mem)
{
int i;
FLOAT x;
for (i = 0; i < DBTAB; i++) {
x = (FLOAT) i / 10.0;
mem->dbtable[i] = 10 * log10(1 + pow(10.0, x / 10.0)) - x;
}
}
static inline FLOAT add_db(psycho_1_mem * mem, FLOAT a, FLOAT b)
{
/* MFC - if the difference between a and b is large (>99), then just return the largest one.
(about 10% of the time) - For differences between 0 and 99, return the largest value, but
add in a pre-calculated difference value. - the value 99 was chosen arbitarily. - maximum
(a-b) i've seen is 572 */
FLOAT fdiff;
int idiff;
fdiff = (10.0 * (a - b));
if (fdiff > 990.0) {
return a;
}
if (fdiff < -990.0) {
return (b);
}
idiff = (int) fdiff;
if (idiff >= 0) {
return (a + mem->dbtable[idiff]);
}
return (b + mem->dbtable[-idiff]);
}
/****************************************************************
* Window the samples then,
* Fast Fourier transform of the input samples.
*
* ( call the FHT-based fft() in fft.c )
*
*
****************************************************************/
static void psycho_1_hann_fft_pickmax(FLOAT sample[FFT_SIZE], mask power[HAN_SIZE],
FLOAT spike[SBLIMIT], FLOAT energy[FFT_SIZE])
{
FLOAT x_real[FFT_SIZE];
register int i, j;
register FLOAT sqrt_8_over_3;
static int init = 0;
static FLOAT window[FFT_SIZE];
FLOAT sum;
if (!init) {
/* calculate window function for the Fourier transform */
/* These values need only be initiliased once, regardless of the caller */
sqrt_8_over_3 = pow(8.0 / 3.0, 0.5);
for (i = 0; i < FFT_SIZE; i++) {
/* Hann window formula */
window[i] = sqrt_8_over_3 * 0.5 * (1 - cos(2.0 * PI * i / (FFT_SIZE))) / FFT_SIZE;
}
init = 1;
}
for (i = 0; i < FFT_SIZE; i++)
x_real[i] = (FLOAT) (sample[i] * window[i]);
psycho_1_fft(x_real, energy, FFT_SIZE);
for (i = 0; i < HAN_SIZE; i++) { /* calculate power density spectrum */
if (energy[i] < 1E-20)
power[i].x = -200.0 + POWERNORM;
else
power[i].x = 10 * log10(energy[i]) + POWERNORM;
power[i].next = STOP;
power[i].type = FALSE;
}
/* Calculate the sum of spectral component in each subband from bound 4-16 */
#define CF 1073741824 /* pow(10, 0.1*POWERNORM) */
#define DBM 1E-20 /* pow(10.0, 0.1*DBMIN */
for (i = 0; i < HAN_SIZE; spike[i >> 4] = 10.0 * log10(sum), i += 16) {
for (j = 0, sum = DBM; j < 16; j++)
sum += CF * energy[i + j];
}
}
/****************************************************************
*
* This function labels the tonal component in the power
* spectrum.
*
****************************************************************/
static void psycho_1_tonal_label(psycho_1_mem * mem, int *tone)
/* this function extracts (tonal) sinusoidals from the spectrum */
{
int i, j, last = LAST, first, run, last_but_one = LAST; /* dpwe */
FLOAT max;
mask *power = mem->power;
*tone = LAST;
for (i = 2; i < HAN_SIZE - 12; i++) {
if (power[i].x > power[i - 1].x && power[i].x >= power[i + 1].x) {
power[i].type = TONE;
power[i].next = LAST;
if (last != LAST)
power[last].next = i;
else
first = *tone = i;
last = i;
}
}
last = LAST;
first = *tone;
*tone = LAST;
while ((first != LAST) && (first != STOP)) { /* the conditions for the tonal */
if (first < 3 || first > 500)
run = 0; /* otherwise k+/-j will be out of bounds */
else if (first < 63)
run = 2; /* components in layer II, which */
else if (first < 127)
run = 3; /* are the boundaries for calc. */
else if (first < 255)
run = 6; /* the tonal components */
else
run = 12;
max = power[first].x - 7; /* after calculation of tonal */
for (j = 2; j <= run; j++) /* components, set to local max */
if (max < power[first - j].x || max < power[first + j].x) {
power[first].type = FALSE;
break;
}
if (power[first].type == TONE) { /* extract tonal components */
int help = first;
if (*tone == LAST)
*tone = first;
while ((power[help].next != LAST) && (power[help].next - first) <= run)
help = power[help].next;
help = power[help].next;
power[first].next = help;
if ((first - last) <= run) {
if (last_but_one != LAST)
power[last_but_one].next = first;
}
if (first > 1 && first < 500) { /* calculate the sum of the */
FLOAT tmp; /* powers of the components */
tmp = add_db(mem, power[first - 1].x, power[first + 1].x);
power[first].x = add_db(mem, power[first].x, tmp);
}
for (j = 1; j <= run; j++) {
power[first - j].x = power[first + j].x = DBMIN;
power[first - j].next = power[first + j].next = STOP;
power[first - j].type = power[first + j].type = FALSE;
}
last_but_one = last;
last = first;
first = power[first].next;
} else {
int ll;
if (last == LAST); /* *tone = power[first].next; dpwe */
else
power[last].next = power[first].next;
ll = first;
first = power[first].next;
power[ll].next = STOP;
}
}
}
/****************************************************************
*
* This function groups all the remaining non-tonal
* spectral lines into critical band where they are replaced by
* one single line.
*
****************************************************************/
static void psycho_1_noise_label(psycho_1_mem * mem, int *noise, FLOAT energy[FFT_SIZE])
{
int i, j, centre, last = LAST;
FLOAT index, weight, sum;
int crit_band = mem->crit_band;
int *cbound = mem->cbound;
mask *power = mem->power;
/* calculate the remaining spectral */
for (i = 0; i < crit_band - 1; i++) { /* lines for non-tonal components */
for (j = cbound[i], weight = 0.0, sum = DBMIN; j < cbound[i + 1]; j++) {
if (power[j].type != TONE) {
if (power[j].x != DBMIN) {
sum = add_db(mem, power[j].x, sum);
/* Weight is used in finding the geometric mean of the noise energy within a
subband */
weight += CF * energy[j] * (FLOAT) (j - cbound[i]) / (FLOAT) (cbound[i + 1] - cbound[i]); /* correction
*/
power[j].x = DBMIN;
}
} /* check to see if the spectral line is low dB, and if */
} /* so replace the center of the critical band, which is */
/* the center freq. of the noise component */
if (sum <= DBMIN)
centre = (cbound[i + 1] + cbound[i]) / 2;
else {
/* fprintf(stderr, "%i [%f %f] -", count++,weight/pow(10.0,0.1*sum),
weight*pow(10.0,-0.1*sum)); */
index = weight * pow(10.0, -0.1 * sum);
centre = cbound[i] + (int) (index * (FLOAT) (cbound[i + 1] - cbound[i]));
}
/* locate next non-tonal component until finished; */
/* add to list of non-tonal components */
/* Masahiro Iwadare's fix for infinite looping problem? */
if (power[centre].type == TONE) {
if (power[centre + 1].type == TONE) {
centre++;
} else
centre--;
}
if (last == LAST)
*noise = centre;
else {
power[centre].next = LAST;
power[last].next = centre;
}
power[centre].x = sum;
power[centre].type = NOISE;
last = centre;
}
}
/****************************************************************
*
* This function reduces the number of noise and tonal
* component for further threshold analysis.
*
****************************************************************/
static void psycho_1_subsampling(mask power[HAN_SIZE], g_thres * ltg, int *tone, int *noise)
{
int i, old;
i = *tone;
old = STOP; /* calculate tonal components for */
while ((i != LAST) && (i != STOP)) { /* reduction of spectral lines */
if (power[i].x < ltg[power[i].map].hear) {
power[i].type = FALSE;
power[i].x = DBMIN;
if (old == STOP)
*tone = power[i].next;
else
power[old].next = power[i].next;
} else
old = i;
i = power[i].next;
}
i = *noise;
old = STOP; /* calculate non-tonal components for */
while ((i != LAST) && (i != STOP)) { /* reduction of spectral lines */
if (power[i].x < ltg[power[i].map].hear) {
power[i].type = FALSE;
power[i].x = DBMIN;
if (old == STOP)
*noise = power[i].next;
else
power[old].next = power[i].next;
} else
old = i;
i = power[i].next;
}
i = *tone;
old = STOP;
while ((i != LAST) && (i != STOP)) { /* if more than one */
if (power[i].next == LAST)
break; /* tonal component */
if (ltg[power[power[i].next].map].bark - /* is less than .5 */
ltg[power[i].map].bark < 0.5) { /* bark, take the */
if (power[power[i].next].x > power[i].x) { /* maximum */
if (old == STOP)
*tone = power[i].next;
else
power[old].next = power[i].next;
power[i].type = FALSE;
power[i].x = DBMIN;
i = power[i].next;
} else {
power[power[i].next].type = FALSE;
power[power[i].next].x = DBMIN;
power[i].next = power[power[i].next].next;
old = i;
}
} else {
old = i;
i = power[i].next;
}
}
}
/****************************************************************
*
* This function calculates the individual threshold and
* sum with the quiet threshold to find the global threshold.
*
****************************************************************/
/* mainly just changed the way range checking was done MFC Nov 1999 */
static void psycho_1_threshold(psycho_1_mem * mem, int *tone, int *noise, int bit_rate)
{
int sub_size = mem->sub_size;
mask *power = mem->power;
g_thres *ltg = mem->ltg;
int k, t;
FLOAT dz, tmps, vf;
for (k = 1; k < sub_size; k++) {
ltg[k].x = DBMIN;
t = *tone; /* calculate individual masking threshold for */
while ((t != LAST) && (t != STOP)) { /* components in order to find the global */
dz = ltg[k].bark - ltg[power[t].map].bark; /* distance of bark value */
if (dz >= -3.0 && dz < 8.0) {
tmps = -1.525 - 0.275 * ltg[power[t].map].bark - 4.5 + power[t].x;
/* masking function for lower & upper slopes */
if (dz < -1)
vf = 17 * (dz + 1) - (0.4 * power[t].x + 6);
else if (dz < 0)
vf = (0.4 * power[t].x + 6) * dz;
else if (dz < 1)
vf = (-17 * dz);
else
vf = -(dz - 1) * (17 - 0.15 * power[t].x) - 17;
ltg[k].x = add_db(mem, ltg[k].x, tmps + vf);
}
t = power[t].next;
}
t = *noise; /* calculate individual masking threshold */
while ((t != LAST) && (t != STOP)) { /* for non-tonal components to find LTG */
dz = ltg[k].bark - ltg[power[t].map].bark; /* distance of bark value */
if (dz >= -3.0 && dz < 8.0) {
tmps = -1.525 - 0.175 * ltg[power[t].map].bark - 0.5 + power[t].x;
/* masking function for lower & upper slopes */
if (dz < -1)
vf = 17 * (dz + 1) - (0.4 * power[t].x + 6);
else if (dz < 0)
vf = (0.4 * power[t].x + 6) * dz;
else if (dz < 1)
vf = (-17 * dz);
else
vf = -(dz - 1) * (17 - 0.15 * power[t].x) - 17;
ltg[k].x = add_db(mem, ltg[k].x, tmps + vf);
}
t = power[t].next;
}
if (bit_rate < 96)
ltg[k].x = add_db(mem, ltg[k].hear, ltg[k].x);
else
ltg[k].x = add_db(mem, ltg[k].hear - 12.0, ltg[k].x);
}
}
/****************************************************************
*
* This function finds the minimum masking threshold and
* return the value to the encoder.
*
****************************************************************/
static void psycho_1_minimum_mask(int sub_size, g_thres * ltg, FLOAT ltmin[SBLIMIT], int sblimit)
{
FLOAT min;
int i, j;
j = 1;
for (i = 0; i < sblimit; i++)
if (j >= sub_size - 1) /* check subband limit, and */
ltmin[i] = ltg[sub_size - 1].hear; /* calculate the minimum masking */
else { /* level of LTMIN for each subband */
min = ltg[j].x;
while (ltg[j].line >> 4 == i && j < sub_size) {
if (min > ltg[j].x)
min = ltg[j].x;
j++;
}
ltmin[i] = min;
}
}
/*****************************************************************
*
* This procedure is called in musicin to pick out the
* smaller of the scalefactor or threshold.
*
*****************************************************************/
static void psycho_1_smr(FLOAT ltmin[SBLIMIT], FLOAT spike[SBLIMIT], FLOAT scale[SBLIMIT],
int sblimit)
{
int i;
FLOAT max;
for (i = 0; i < sblimit; i++) { /* determine the signal */
max = 20 * log10(scale[i] * 32768) - 10; /* level for each subband */
if (spike[i] > max)
max = spike[i]; /* for the maximum scale */
max -= ltmin[i]; /* factors */
ltmin[i] = max;
}
}
/*
static void psycho_1_dump(mask power[HAN_SIZE], int *tone, int *noise) {
int t;
fprintf(stderr,"1 Ton: ");
t=*tone;
while (t!=LAST && t!=STOP) {
fprintf(stderr,"[%i] %3.0f ",t, power[t].x);
t = power[t].next;
}
fprintf(stderr,"\n");
fprintf(stderr,"1 Nos: ");
t=*noise;
while (t!=LAST && t!=STOP) {
fprintf(stderr,"[%i] %3.0f ",t, power[t].x);
t = power[t].next;
}
fprintf(stderr,"\n");
}
*/
void psycho_1(twolame_options * glopts, short buffer[2][1152], FLOAT scale[2][SBLIMIT],
FLOAT ltmin[2][SBLIMIT])
{
psycho_1_mem *mem;
frame_header *header = &glopts->header;
int nch = glopts->num_channels_out;
int sblimit = glopts->sblimit;
int k, i, tone = 0, noise = 0;
FLOAT sample[FFT_SIZE];
FLOAT spike[2][SBLIMIT];
FLOAT *fft_buf[2];
FLOAT energy[FFT_SIZE];
/* call functions for critical boundaries, freq. */
if (!glopts->p1mem) { /* bands, bark values, and mapping */
mem = (psycho_1_mem *) TWOLAME_MALLOC(sizeof(psycho_1_mem));
mem->power = (mask_ptr) TWOLAME_MALLOC(sizeof(mask) * HAN_SIZE);
if (header->version == TWOLAME_MPEG1) {
mem->cbound =
psycho_1_read_cbound(header->lay, header->samplerate_idx, &mem->crit_band);
psycho_1_read_freq_band(&mem->ltg, header->lay, header->samplerate_idx, &mem->sub_size);
} else {
mem->cbound =
psycho_1_read_cbound(header->lay, header->samplerate_idx + 4, &mem->crit_band);
psycho_1_read_freq_band(&mem->ltg, header->lay, header->samplerate_idx + 4,
&mem->sub_size);
}
psycho_1_make_map(mem->sub_size, mem->power, mem->ltg);
for (i = 0; i < 1408; i++)
mem->fft_buf[0][i] = mem->fft_buf[1][i] = 0;
psycho_1_init_add_db(mem); /* create the add_db table */
mem->off[0] = 256;
mem->off[1] = 256;
glopts->p1mem = mem;
}
{
mem = glopts->p1mem;
fft_buf[0] = mem->fft_buf[0];
fft_buf[1] = mem->fft_buf[1];
}
for (k = 0; k < nch; k++) {
/* check pcm input for 3 blocks of 384 samples */
/* sami's speedup, added in 02j saves about 4% overall during an encode */
int ok = mem->off[k] % 1408;
for (i = 0; i < 1152; i++) {
fft_buf[k][ok++] = (FLOAT) buffer[k][i] / SCALE;
if (ok >= 1408)
ok = 0;
}
ok = (mem->off[k] + 1216) % 1408;
for (i = 0; i < FFT_SIZE; i++) {
sample[i] = fft_buf[k][ok++];
if (ok >= 1408)
ok = 0;
}
mem->off[k] += 1152;
mem->off[k] %= 1408;
psycho_1_hann_fft_pickmax(sample, mem->power, &spike[k][0], energy);
psycho_1_tonal_label(mem, &tone);
psycho_1_noise_label(mem, &noise, energy);
// psycho_1_dump(power, &tone, &noise) ;
psycho_1_subsampling(mem->power, mem->ltg, &tone, &noise);
psycho_1_threshold(mem, &tone, &noise, glopts->bitrate / nch);
psycho_1_minimum_mask(mem->sub_size, mem->ltg, &ltmin[k][0], sblimit);
psycho_1_smr(&ltmin[k][0], &spike[k][0], &scale[k][0], sblimit);
}
}
void psycho_1_deinit(psycho_1_mem ** mem)
{
if (mem == NULL || *mem == NULL)
return;
TWOLAME_FREE((*mem)->cbound);
TWOLAME_FREE((*mem)->ltg);
TWOLAME_FREE((*mem)->power);
TWOLAME_FREE((*mem));
}
// vim:ts=4:sw=4:nowrap: