1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-04-30 15:49:41 +02:00
Benjamin Drung 787f2afd10 Introduce end-of-line normalization
Ensures that all files that Git considers to be text will have
normalized (LF) line endings in the repository. When core.eol is set to
native (which is the default), Git will convert the line endings of
normalized files in your working directory back to your platform's
native line ending.

See also https://git-scm.com/docs/gitattributes
2016-05-17 01:05:05 +02:00

277 lines
7.8 KiB
C++
Raw Blame History

////////////////////////////////////////////////////////////////////////////////
///
/// Peak detection routine.
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2012-12-28 21:52:47 +0200 (Fri, 28 Dec 2012) $
// File revision : $Revision: 4 $
//
// $Id: PeakFinder.cpp 164 2012-12-28 19:52:47Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include "PeakFinder.h"
using namespace soundtouch;
#define max(x, y) (((x) > (y)) ? (x) : (y))
PeakFinder::PeakFinder()
{
minPos = maxPos = 0;
}
// Finds real 'top' of a peak hump from neighnourhood of the given 'peakpos'.
int PeakFinder::findTop(const float *data, int peakpos) const
{
int i;
int start, end;
float refvalue;
refvalue = data[peakpos];
// seek within <20>10 points
start = peakpos - 10;
if (start < minPos) start = minPos;
end = peakpos + 10;
if (end > maxPos) end = maxPos;
for (i = start; i <= end; i ++)
{
if (data[i] > refvalue)
{
peakpos = i;
refvalue = data[i];
}
}
// failure if max value is at edges of seek range => it's not peak, it's at slope.
if ((peakpos == start) || (peakpos == end)) return 0;
return peakpos;
}
// Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding
// to direction defined by 'direction' until next 'hump' after minimum value will
// begin
int PeakFinder::findGround(const float *data, int peakpos, int direction) const
{
int lowpos;
int pos;
int climb_count;
float refvalue;
float delta;
climb_count = 0;
refvalue = data[peakpos];
lowpos = peakpos;
pos = peakpos;
while ((pos > minPos+1) && (pos < maxPos-1))
{
int prevpos;
prevpos = pos;
pos += direction;
// calculate derivate
delta = data[pos] - data[prevpos];
if (delta <= 0)
{
// going downhill, ok
if (climb_count)
{
climb_count --; // decrease climb count
}
// check if new minimum found
if (data[pos] < refvalue)
{
// new minimum found
lowpos = pos;
refvalue = data[pos];
}
}
else
{
// going uphill, increase climbing counter
climb_count ++;
if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit
}
}
return lowpos;
}
// Find offset where the value crosses the given level, when starting from 'peakpos' and
// proceeds to direction defined in 'direction'
int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const
{
float peaklevel;
int pos;
peaklevel = data[peakpos];
assert(peaklevel >= level);
pos = peakpos;
while ((pos >= minPos) && (pos < maxPos))
{
if (data[pos + direction] < level) return pos; // crossing found
pos += direction;
}
return -1; // not found
}
// Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos'
double PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const
{
int i;
float sum;
float wsum;
sum = 0;
wsum = 0;
for (i = firstPos; i <= lastPos; i ++)
{
sum += (float)i * data[i];
wsum += data[i];
}
if (wsum < 1e-6) return 0;
return sum / wsum;
}
/// get exact center of peak near given position by calculating local mass of center
double PeakFinder::getPeakCenter(const float *data, int peakpos) const
{
float peakLevel; // peak level
int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level
float cutLevel; // cutting value
float groundLevel; // ground level of the peak
int gp1, gp2; // bottom positions of the peak 'hump'
// find ground positions.
gp1 = findGround(data, peakpos, -1);
gp2 = findGround(data, peakpos, 1);
groundLevel = 0.5f * (data[gp1] + data[gp2]);
peakLevel = data[peakpos];
// calculate 70%-level of the peak
cutLevel = 0.70f * peakLevel + 0.30f * groundLevel;
// find mid-level crossings
crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1);
crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1);
if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak..
// calculate mass center of the peak surroundings
return calcMassCenter(data, crosspos1, crosspos2);
}
double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
{
int i;
int peakpos; // position of peak level
double highPeak, peak;
this->minPos = aminPos;
this->maxPos = amaxPos;
// find absolute peak
peakpos = minPos;
peak = data[minPos];
for (i = minPos + 1; i < maxPos; i ++)
{
if (data[i] > peak)
{
peak = data[i];
peakpos = i;
}
}
// Calculate exact location of the highest peak mass center
highPeak = getPeakCenter(data, peakpos);
peak = highPeak;
// Now check if the highest peak were in fact harmonic of the true base beat peak
// - sometimes the highest peak can be Nth harmonic of the true base peak yet
// just a slightly higher than the true base
for (i = 3; i < 10; i ++)
{
double peaktmp, harmonic;
int i1,i2;
harmonic = (double)i * 0.5;
peakpos = (int)(highPeak / harmonic + 0.5f);
if (peakpos < minPos) break;
peakpos = findTop(data, peakpos); // seek true local maximum index
if (peakpos == 0) continue; // no local max here
// calculate mass-center of possible harmonic peak
peaktmp = getPeakCenter(data, peakpos);
// accept harmonic peak if
// (a) it is found
// (b) is within <20>4% of the expected harmonic interval
// (c) has at least half x-corr value of the max. peak
double diff = harmonic * peaktmp / highPeak;
if ((diff < 0.96) || (diff > 1.04)) continue; // peak too afar from expected
// now compare to highest detected peak
i1 = (int)(highPeak + 0.5);
i2 = (int)(peaktmp + 0.5);
if (data[i2] >= 0.4*data[i1])
{
// The harmonic is at least half as high primary peak,
// thus use the harmonic peak instead
peak = peaktmp;
}
}
return peak;
}