1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-06-18 09:00:07 +02:00
2010-01-24 09:19:39 +00:00

224 lines
6.9 KiB
C

/* fft.c -- implement snd_fft */
#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
#include <math.h>
#include <stdio.h>
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "fft.h"
#include "fftext.h"
/* CHANGE LOG
* --------------------------------------------------------------------
* 28Apr03 dm change for portability: min->MIN
*/
/* NOTE: this code does not properly handle start times that do not
* correspond to the time of the first actual sample
*/
/* The snd_fft function is based on snd_fetch_array */
/*
* storage layout: the extra field points to extra state that we'll use
* extra[0] -> length of extra storage
* extra[1] -> CNT (number of samples in current block)
* extra[2] -> INDEX (current sample index in current block)
* extra[3] -> FILLCNT (how many samples in buffer)
* extra[4] -> TERMCNT (how many samples until termination)
* extra[5 .. 5+len-1] -> samples (stored as floats)
* extra[5+len .. 5+2*len-1] -> array of samples to fft
* extra[5+2*len ... 5+3*len-1] -> window coefficients
*
* Termination details:
* Return NIL when the sound terminates.
* Termination is defined as the point where all original
* signal samples have been shifted out of the samples buffer
* so that all that's left are zeros from beyond the termination
* point.
* Implementation: when termination is discovered, set TERMCNT
* to the number of samples to be shifted out. TERMCNT is initially
* -1 as a flag that we haven't seen the termination yet.
* Each time samples are shifted, decrement TERMCNT by the shift amount.
* When TERMCNT goes to zero, return NULL.
*/
#define CNT extra[1]
#define INDEX extra[2]
#define FILLCNT extra[3]
#define TERMCNT extra[4]
#define OFFSET 5
#define SAMPLES list->block->samples
/* DEBUGGING PRINT FUNCTION:
void printfloats(char *caption, float *data, int len)
{
int i;
printf("%s: ", caption);
for (i = 0; i < len; i++) {
printf("%d:%g ", i, data[i]);
}
printf("\n");
}
*/
void n_samples_from_sound(sound_type s, long n, float *table)
{
long blocklen;
sample_type scale_factor = s->scale;
s = sound_copy(s);
while (n > 0) {
sample_block_type sampblock = sound_get_next(s, &blocklen);
long togo = MIN(blocklen, n);
long i;
sample_block_values_type sbufp = sampblock->samples;
for (i = 0; i < togo; i++) {
*table++ = (float) (*sbufp++ * scale_factor);
}
n -= togo;
}
sound_unref(s);
}
LVAL snd_fft(sound_type s, long len, long step, LVAL winval)
{
long i, m, maxlen, skip, fillptr;
float *samples;
float *temp_fft;
float *window;
LVAL result;
if (len < 1) xlfail("len < 1");
if (!s->extra) { /* this is the first call, so fix up s */
sound_type w = NULL;
if (winval) {
if (soundp(winval)) {
w = getsound(winval);
} else {
xlerror("expected a sound", winval);
}
}
/* note: any storage required by fft must be allocated here in a
* contiguous block of memory who's size is given by the first long
* in the block. Here, there are 4 more longs after the size, and
* then room for 3*len floats (assumes that floats and longs take
* equal space).
*
* The reason for 3*len floats is to provide space for:
* the samples to be transformed (len)
* the complex FFT result (len)
* the window coefficients (len)
*
* The reason for this storage restriction is that when a sound is
* freed, the block of memory pointed to by extra is also freed.
* There is no function call that might free a more complex
* structure (this could be added in sound.c, however, if it's
* really necessary).
*/
s->extra = (long *) malloc(sizeof(long) * (3 * len + OFFSET));
s->extra[0] = sizeof(long) * (3 * len + OFFSET);
s->CNT = s->INDEX = s->FILLCNT = 0;
s->TERMCNT = -1;
maxlen = len;
window = (float *) &(s->extra[OFFSET + 2 * len]);
/* fill the window from w */
if (!w) {
for (i = 0; i < len; i++) *window++ = 1.0F;
} else {
n_samples_from_sound(w, len, window);
}
} else {
maxlen = ((s->extra[0] / sizeof(long)) - OFFSET) / 3;
if (maxlen != len) xlfail("len changed from initial value");
}
samples = (float *) &(s->extra[OFFSET]);
temp_fft = samples + len;
window = temp_fft + len;
/* step 1: refill buffer with samples */
fillptr = s->FILLCNT;
while (fillptr < maxlen) {
if (s->INDEX == s->CNT) {
sound_get_next(s, &(s->CNT));
if (s->SAMPLES == zero_block->samples) {
if (s->TERMCNT < 0) s->TERMCNT = fillptr;
}
s->INDEX = 0;
}
samples[fillptr++] = s->SAMPLES[s->INDEX++] * s->scale;
}
s->FILLCNT = fillptr;
/* it is important to test here AFTER filling the buffer, because
* if fillptr WAS 0 when we hit the zero_block, then filling the
* buffer will set TERMCNT to 0.
*/
if (s->TERMCNT == 0) return NULL;
/* logical stop time is ignored by this code -- to fix this,
* you would need a way to return the logical stop time to
* the caller.
*/
/* step 2: construct an array and return it */
xlsave1(result);
result = newvector(len);
/* first len floats will be real part, second len floats imaginary
* copy buffer to temp_fft with windowing
*/
for (i = 0; i < len; i++) {
temp_fft[i] = samples[i] * *window++;
}
/* perform the fft: */
m = round(log(len) / M_LN2); /* compute log-base-2(len) */
if (!fftInit(m)) rffts(temp_fft, m, 1);
else xlfail("FFT initialization error");
/* move results to Lisp array */
setelement(result, 0, cvflonum(temp_fft[0]));
setelement(result, len - 1, cvflonum(temp_fft[1]));
for (i = 2; i < len; i++) {
setelement(result, i - 1, cvflonum(temp_fft[i]));
}
/* step 3: shift samples by step */
if (step < 0) xlfail("step < 0");
s->FILLCNT -= step;
if (s->FILLCNT < 0) s->FILLCNT = 0;
for (i = 0; i < s->FILLCNT; i++) {
samples[i] = samples[i + step];
}
if (s->TERMCNT >= 0) {
s->TERMCNT -= step;
if (s->TERMCNT < 0) s->TERMCNT = 0;
}
/* step 4: advance in sound to next sample we need
* (only does work if step > size of buffer)
*/
skip = step - maxlen;
while (skip > 0) {
long remaining = s->CNT - s->INDEX;
if (remaining >= skip) {
s->INDEX += skip;
skip = 0;
} else {
skip -= remaining;
sound_get_next(s, &(s->CNT));
s->INDEX = 0;
}
}
/* restore the stack */
xlpop();
return result;
} /* snd_fetch_array */