mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-06 14:52:34 +02:00
C4189 is 'Local variable initialised but not used' C4100 is 'Unreferenced parameter' Fixed some other warnings, e.g. about empty if, too.
693 lines
19 KiB
C++
693 lines
19 KiB
C++
/**********************************************************************
|
|
|
|
FFT.cpp
|
|
|
|
Dominic Mazzoni
|
|
|
|
September 2000
|
|
|
|
*******************************************************************//*!
|
|
|
|
\file FFT.cpp
|
|
\brief Fast Fourier Transform routines.
|
|
|
|
This file contains a few FFT routines, including a real-FFT
|
|
routine that is almost twice as fast as a normal complex FFT,
|
|
and a power spectrum routine when you know you don't care
|
|
about phase information.
|
|
|
|
Some of this code was based on a free implementation of an FFT
|
|
by Don Cross, available on the web at:
|
|
|
|
http://www.intersrv.com/~dcross/fft.html
|
|
|
|
The basic algorithm for his code was based on Numerican Recipes
|
|
in Fortran. I optimized his code further by reducing array
|
|
accesses, caching the bit reversal table, and eliminating
|
|
float-to-double conversions, and I added the routines to
|
|
calculate a real FFT and a real power spectrum.
|
|
|
|
*//*******************************************************************/
|
|
/*
|
|
Salvo Ventura - November 2006
|
|
Added more window functions:
|
|
* 4: Blackman
|
|
* 5: Blackman-Harris
|
|
* 6: Welch
|
|
* 7: Gaussian(a=2.5)
|
|
* 8: Gaussian(a=3.5)
|
|
* 9: Gaussian(a=4.5)
|
|
*/
|
|
|
|
#include "Audacity.h"
|
|
#include "Internat.h"
|
|
|
|
#include "FFT.h"
|
|
#include "MemoryX.h"
|
|
#include "SampleFormat.h"
|
|
|
|
#include <wx/intl.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "RealFFTf.h"
|
|
#include "Experimental.h"
|
|
|
|
static ArraysOf<int> gFFTBitTable;
|
|
static const size_t MaxFastBits = 16;
|
|
|
|
/* Declare Static functions */
|
|
static void InitFFT();
|
|
|
|
static bool IsPowerOfTwo(size_t x)
|
|
{
|
|
if (x < 2)
|
|
return false;
|
|
|
|
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static size_t NumberOfBitsNeeded(size_t PowerOfTwo)
|
|
{
|
|
if (PowerOfTwo < 2) {
|
|
wxFprintf(stderr, "Error: FFT called with size %ld\n", PowerOfTwo);
|
|
exit(1);
|
|
}
|
|
|
|
size_t i = 0;
|
|
while (PowerOfTwo > 1)
|
|
PowerOfTwo >>= 1, ++i;
|
|
|
|
return i;
|
|
}
|
|
|
|
int ReverseBits(size_t index, size_t NumBits)
|
|
{
|
|
size_t i, rev;
|
|
|
|
for (i = rev = 0; i < NumBits; i++) {
|
|
rev = (rev << 1) | (index & 1);
|
|
index >>= 1;
|
|
}
|
|
|
|
return rev;
|
|
}
|
|
|
|
void InitFFT()
|
|
{
|
|
gFFTBitTable.reinit(MaxFastBits);
|
|
|
|
size_t len = 2;
|
|
for (size_t b = 1; b <= MaxFastBits; b++) {
|
|
auto &array = gFFTBitTable[b - 1];
|
|
array.reinit(len);
|
|
for (size_t i = 0; i < len; i++)
|
|
array[i] = ReverseBits(i, b);
|
|
|
|
len <<= 1;
|
|
}
|
|
}
|
|
|
|
void DeinitFFT()
|
|
{
|
|
gFFTBitTable.reset();
|
|
}
|
|
|
|
static inline size_t FastReverseBits(size_t i, size_t NumBits)
|
|
{
|
|
if (NumBits <= MaxFastBits)
|
|
return gFFTBitTable[NumBits - 1][i];
|
|
else
|
|
return ReverseBits(i, NumBits);
|
|
}
|
|
|
|
/*
|
|
* Complex Fast Fourier Transform
|
|
*/
|
|
|
|
void FFT(size_t NumSamples,
|
|
bool InverseTransform,
|
|
const float *RealIn, const float *ImagIn,
|
|
float *RealOut, float *ImagOut)
|
|
{
|
|
double angle_numerator = 2.0 * M_PI;
|
|
double tr, ti; /* temp real, temp imaginary */
|
|
|
|
if (!IsPowerOfTwo(NumSamples)) {
|
|
wxFprintf(stderr, "%ld is not a power of two\n", NumSamples);
|
|
exit(1);
|
|
}
|
|
|
|
if (!gFFTBitTable)
|
|
InitFFT();
|
|
|
|
if (!InverseTransform)
|
|
angle_numerator = -angle_numerator;
|
|
|
|
/* Number of bits needed to store indices */
|
|
auto NumBits = NumberOfBitsNeeded(NumSamples);
|
|
|
|
/*
|
|
** Do simultaneous data copy and bit-reversal ordering into outputs...
|
|
*/
|
|
|
|
for (size_t i = 0; i < NumSamples; i++) {
|
|
auto j = FastReverseBits(i, NumBits);
|
|
RealOut[j] = RealIn[i];
|
|
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
|
|
}
|
|
|
|
/*
|
|
** Do the FFT itself...
|
|
*/
|
|
|
|
size_t BlockEnd = 1;
|
|
for (size_t BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
|
|
|
|
double delta_angle = angle_numerator / (double) BlockSize;
|
|
|
|
double sm2 = sin(-2 * delta_angle);
|
|
double sm1 = sin(-delta_angle);
|
|
double cm2 = cos(-2 * delta_angle);
|
|
double cm1 = cos(-delta_angle);
|
|
double w = 2 * cm1;
|
|
double ar0, ar1, ar2, ai0, ai1, ai2;
|
|
|
|
for (size_t i = 0; i < NumSamples; i += BlockSize) {
|
|
ar2 = cm2;
|
|
ar1 = cm1;
|
|
|
|
ai2 = sm2;
|
|
ai1 = sm1;
|
|
|
|
for (size_t j = i, n = 0; n < BlockEnd; j++, n++) {
|
|
ar0 = w * ar1 - ar2;
|
|
ar2 = ar1;
|
|
ar1 = ar0;
|
|
|
|
ai0 = w * ai1 - ai2;
|
|
ai2 = ai1;
|
|
ai1 = ai0;
|
|
|
|
size_t k = j + BlockEnd;
|
|
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
|
|
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
|
|
|
|
RealOut[k] = RealOut[j] - tr;
|
|
ImagOut[k] = ImagOut[j] - ti;
|
|
|
|
RealOut[j] += tr;
|
|
ImagOut[j] += ti;
|
|
}
|
|
}
|
|
|
|
BlockEnd = BlockSize;
|
|
}
|
|
|
|
/*
|
|
** Need to normalize if inverse transform...
|
|
*/
|
|
|
|
if (InverseTransform) {
|
|
float denom = (float) NumSamples;
|
|
|
|
for (size_t i = 0; i < NumSamples; i++) {
|
|
RealOut[i] /= denom;
|
|
ImagOut[i] /= denom;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Real Fast Fourier Transform
|
|
*
|
|
* This is merely a wrapper of RealFFTf() from RealFFTf.h.
|
|
*/
|
|
|
|
void RealFFT(size_t NumSamples, const float *RealIn, float *RealOut, float *ImagOut)
|
|
{
|
|
auto hFFT = GetFFT(NumSamples);
|
|
Floats pFFT{ NumSamples };
|
|
// Copy the data into the processing buffer
|
|
for(size_t i = 0; i < NumSamples; i++)
|
|
pFFT[i] = RealIn[i];
|
|
|
|
// Perform the FFT
|
|
RealFFTf(pFFT.get(), hFFT.get());
|
|
|
|
// Copy the data into the real and imaginary outputs
|
|
for (size_t i = 1; i<(NumSamples / 2); i++) {
|
|
RealOut[i]=pFFT[hFFT->BitReversed[i] ];
|
|
ImagOut[i]=pFFT[hFFT->BitReversed[i]+1];
|
|
}
|
|
// Handle the (real-only) DC and Fs/2 bins
|
|
RealOut[0] = pFFT[0];
|
|
RealOut[NumSamples / 2] = pFFT[1];
|
|
ImagOut[0] = ImagOut[NumSamples / 2] = 0;
|
|
// Fill in the upper half using symmetry properties
|
|
for(size_t i = NumSamples / 2 + 1; i < NumSamples; i++) {
|
|
RealOut[i] = RealOut[NumSamples-i];
|
|
ImagOut[i] = -ImagOut[NumSamples-i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* InverseRealFFT
|
|
*
|
|
* This function computes the inverse of RealFFT, above.
|
|
* The RealIn and ImagIn is assumed to be conjugate-symmetric
|
|
* and as a result the output is purely real.
|
|
* Only the first half of RealIn and ImagIn are used due to this
|
|
* symmetry assumption.
|
|
*
|
|
* This is merely a wrapper of InverseRealFFTf() from RealFFTf.h.
|
|
*/
|
|
void InverseRealFFT(size_t NumSamples, const float *RealIn, const float *ImagIn,
|
|
float *RealOut)
|
|
{
|
|
auto hFFT = GetFFT(NumSamples);
|
|
Floats pFFT{ NumSamples };
|
|
// Copy the data into the processing buffer
|
|
for (size_t i = 0; i < (NumSamples / 2); i++)
|
|
pFFT[2*i ] = RealIn[i];
|
|
if(ImagIn == NULL) {
|
|
for (size_t i = 0; i < (NumSamples / 2); i++)
|
|
pFFT[2*i+1] = 0;
|
|
} else {
|
|
for (size_t i = 0; i < (NumSamples / 2); i++)
|
|
pFFT[2*i+1] = ImagIn[i];
|
|
}
|
|
// Put the fs/2 component in the imaginary part of the DC bin
|
|
pFFT[1] = RealIn[NumSamples / 2];
|
|
|
|
// Perform the FFT
|
|
InverseRealFFTf(pFFT.get(), hFFT.get());
|
|
|
|
// Copy the data to the (purely real) output buffer
|
|
ReorderToTime(hFFT.get(), pFFT.get(), RealOut);
|
|
}
|
|
|
|
/*
|
|
* PowerSpectrum
|
|
*
|
|
* This function uses RealFFTf() from RealFFTf.h to perform the real
|
|
* FFT computation, and then squares the real and imaginary part of
|
|
* each coefficient, extracting the power and throwing away the phase.
|
|
*
|
|
* For speed, it does not call RealFFT, but duplicates some
|
|
* of its code.
|
|
*/
|
|
|
|
void PowerSpectrum(size_t NumSamples, const float *In, float *Out)
|
|
{
|
|
auto hFFT = GetFFT(NumSamples);
|
|
Floats pFFT{ NumSamples };
|
|
// Copy the data into the processing buffer
|
|
for (size_t i = 0; i<NumSamples; i++)
|
|
pFFT[i] = In[i];
|
|
|
|
// Perform the FFT
|
|
RealFFTf(pFFT.get(), hFFT.get());
|
|
|
|
// Copy the data into the real and imaginary outputs
|
|
for (size_t i = 1; i<NumSamples / 2; i++) {
|
|
Out[i]= (pFFT[hFFT->BitReversed[i] ]*pFFT[hFFT->BitReversed[i] ])
|
|
+ (pFFT[hFFT->BitReversed[i]+1]*pFFT[hFFT->BitReversed[i]+1]);
|
|
}
|
|
// Handle the (real-only) DC and Fs/2 bins
|
|
Out[0] = pFFT[0]*pFFT[0];
|
|
Out[NumSamples / 2] = pFFT[1]*pFFT[1];
|
|
}
|
|
|
|
/*
|
|
* Windowing Functions
|
|
*/
|
|
|
|
int NumWindowFuncs()
|
|
{
|
|
return eWinFuncCount;
|
|
}
|
|
|
|
const wxChar *WindowFuncName(int whichFunction)
|
|
{
|
|
switch (whichFunction) {
|
|
default:
|
|
case eWinFuncRectangular:
|
|
return _("Rectangular");
|
|
case eWinFuncBartlett:
|
|
return wxT("Bartlett");
|
|
case eWinFuncHamming:
|
|
return wxT("Hamming");
|
|
case eWinFuncHanning:
|
|
return wxT("Hanning");
|
|
case eWinFuncBlackman:
|
|
return wxT("Blackman");
|
|
case eWinFuncBlackmanHarris:
|
|
return wxT("Blackman-Harris");
|
|
case eWinFuncWelch:
|
|
return wxT("Welch");
|
|
case eWinFuncGaussian25:
|
|
return wxT("Gaussian(a=2.5)");
|
|
case eWinFuncGaussian35:
|
|
return wxT("Gaussian(a=3.5)");
|
|
case eWinFuncGaussian45:
|
|
return wxT("Gaussian(a=4.5)");
|
|
}
|
|
}
|
|
|
|
void NewWindowFunc(int whichFunction, size_t NumSamplesIn, bool extraSample, float *in)
|
|
{
|
|
int NumSamples = (int)NumSamplesIn;
|
|
if (extraSample) {
|
|
wxASSERT(NumSamples > 0);
|
|
--NumSamples;
|
|
}
|
|
wxASSERT(NumSamples > 0);
|
|
|
|
switch (whichFunction) {
|
|
default:
|
|
wxFprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
|
|
break;
|
|
case eWinFuncRectangular:
|
|
// Multiply all by 1.0f -- do nothing
|
|
break;
|
|
|
|
case eWinFuncBartlett:
|
|
{
|
|
// Bartlett (triangular) window
|
|
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
|
|
const float denom = NumSamples / 2.0f;
|
|
in[0] = 0.0f;
|
|
for (int ii = 1;
|
|
ii <= nPairs; // Yes, <=
|
|
++ii) {
|
|
const float value = ii / denom;
|
|
in[ii] *= value;
|
|
in[NumSamples - ii] *= value;
|
|
}
|
|
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
|
|
// When odd, the value of 1.0 is not reached
|
|
}
|
|
break;
|
|
case eWinFuncHamming:
|
|
{
|
|
// Hamming
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
static const double coeff0 = 0.54, coeff1 = -0.46;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
|
|
}
|
|
break;
|
|
case eWinFuncHanning:
|
|
{
|
|
// Hanning
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
static const double coeff0 = 0.5, coeff1 = -0.5;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
|
|
}
|
|
break;
|
|
case eWinFuncBlackman:
|
|
{
|
|
// Blackman
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
|
|
}
|
|
break;
|
|
case eWinFuncBlackmanHarris:
|
|
{
|
|
// Blackman-Harris
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
const double multiplier3 = 3 * multiplier;
|
|
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
|
|
}
|
|
break;
|
|
case eWinFuncWelch:
|
|
{
|
|
// Welch
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
in[ii] *= 4 * iOverN * (1 - iOverN);
|
|
}
|
|
}
|
|
break;
|
|
case eWinFuncGaussian25:
|
|
{
|
|
// Gaussian (a=2.5)
|
|
// Precalculate some values, and simplify the fmla to try and reduce overhead
|
|
static const double A = -2 * 2.5*2.5;
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
// full
|
|
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
|
|
// reduced
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
|
}
|
|
}
|
|
break;
|
|
case eWinFuncGaussian35:
|
|
{
|
|
// Gaussian (a=3.5)
|
|
static const double A = -2 * 3.5*3.5;
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
|
}
|
|
}
|
|
break;
|
|
case eWinFuncGaussian45:
|
|
{
|
|
// Gaussian (a=4.5)
|
|
static const double A = -2 * 4.5*4.5;
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (extraSample && whichFunction != eWinFuncRectangular) {
|
|
double value = 0.0;
|
|
switch (whichFunction) {
|
|
case eWinFuncHamming:
|
|
value = 0.08;
|
|
break;
|
|
case eWinFuncGaussian25:
|
|
value = exp(-2 * 2.5 * 2.5 * 0.25);
|
|
break;
|
|
case eWinFuncGaussian35:
|
|
value = exp(-2 * 3.5 * 3.5 * 0.25);
|
|
break;
|
|
case eWinFuncGaussian45:
|
|
value = exp(-2 * 4.5 * 4.5 * 0.25);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
in[NumSamples] *= value;
|
|
}
|
|
}
|
|
|
|
// See cautions in FFT.h !
|
|
void WindowFunc(int whichFunction, size_t NumSamples, float *in)
|
|
{
|
|
bool extraSample = false;
|
|
switch (whichFunction)
|
|
{
|
|
case eWinFuncHamming:
|
|
case eWinFuncHanning:
|
|
case eWinFuncBlackman:
|
|
case eWinFuncBlackmanHarris:
|
|
extraSample = true;
|
|
break;
|
|
default:
|
|
break;
|
|
case eWinFuncBartlett:
|
|
// PRL: Do nothing here either
|
|
// But I want to comment that the old function did this case
|
|
// wrong in the second half of the array, in case NumSamples was odd
|
|
// but I think that never happened, so I am not bothering to preserve that
|
|
break;
|
|
}
|
|
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
|
|
}
|
|
|
|
void DerivativeOfWindowFunc(int whichFunction, size_t NumSamples, bool extraSample, float *in)
|
|
{
|
|
if (eWinFuncRectangular == whichFunction)
|
|
{
|
|
// Rectangular
|
|
// There are deltas at the ends
|
|
wxASSERT(NumSamples > 0);
|
|
--NumSamples;
|
|
// in[0] *= 1.0f;
|
|
for (int ii = 1; ii < (int)NumSamples; ++ii)
|
|
in[ii] = 0.0f;
|
|
in[NumSamples] *= -1.0f;
|
|
return;
|
|
}
|
|
|
|
if (extraSample) {
|
|
wxASSERT(NumSamples > 0);
|
|
--NumSamples;
|
|
}
|
|
|
|
wxASSERT(NumSamples > 0);
|
|
|
|
double A;
|
|
switch (whichFunction) {
|
|
case eWinFuncBartlett:
|
|
{
|
|
// Bartlett (triangular) window
|
|
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
|
|
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
|
|
const float value = 2.0f / NumSamples;
|
|
in[0] *=
|
|
// Average the two limiting values of discontinuous derivative
|
|
value / 2.0f;
|
|
for (int ii = 1;
|
|
ii <= nPairs; // Yes, <=
|
|
++ii) {
|
|
in[ii] *= value;
|
|
in[NumSamples - ii] *= -value;
|
|
}
|
|
if (NumSamples % 2 == 0)
|
|
// Average the two limiting values of discontinuous derivative
|
|
in[NumSamples / 2] = 0.0f;
|
|
if (extraSample)
|
|
in[NumSamples] *=
|
|
// Average the two limiting values of discontinuous derivative
|
|
-value / 2.0f;
|
|
else
|
|
// Halve the multiplier previously applied
|
|
// Average the two limiting values of discontinuous derivative
|
|
in[NumSamples - 1] *= 0.5f;
|
|
}
|
|
break;
|
|
case eWinFuncHamming:
|
|
{
|
|
// Hamming
|
|
// There are deltas at the ends
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
|
|
// TODO This code should be more explicit about the precision it intends.
|
|
// For now we get C4305 warnings, truncation from 'const double' to 'float'
|
|
in[0] *= coeff0;
|
|
if (!extraSample)
|
|
--NumSamples;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier);
|
|
if (extraSample)
|
|
in[NumSamples] *= - coeff0;
|
|
else
|
|
// slightly different
|
|
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
|
|
}
|
|
break;
|
|
case eWinFuncHanning:
|
|
{
|
|
// Hanning
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double coeff1 = -0.5 * multiplier;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier);
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
}
|
|
break;
|
|
case eWinFuncBlackman:
|
|
{
|
|
// Blackman
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
}
|
|
break;
|
|
case eWinFuncBlackmanHarris:
|
|
{
|
|
// Blackman-Harris
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
const double multiplier3 = 3 * multiplier;
|
|
const double coeff1 = -0.48829 * multiplier,
|
|
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
}
|
|
break;
|
|
case eWinFuncWelch:
|
|
{
|
|
// Welch
|
|
const float N = NumSamples;
|
|
const float NN = NumSamples * NumSamples;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii) {
|
|
in[ii] *= 4 * (N - ii - ii) / NN;
|
|
}
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
// Average the two limiting values of discontinuous derivative
|
|
in[0] /= 2.0f;
|
|
in[NumSamples - 1] /= 2.0f;
|
|
}
|
|
break;
|
|
case eWinFuncGaussian25:
|
|
// Gaussian (a=2.5)
|
|
A = -2 * 2.5*2.5;
|
|
goto Gaussian;
|
|
case eWinFuncGaussian35:
|
|
// Gaussian (a=3.5)
|
|
A = -2 * 3.5*3.5;
|
|
goto Gaussian;
|
|
case eWinFuncGaussian45:
|
|
// Gaussian (a=4.5)
|
|
A = -2 * 4.5*4.5;
|
|
goto Gaussian;
|
|
Gaussian:
|
|
{
|
|
// Gaussian (a=2.5)
|
|
// There are deltas at the ends
|
|
const float invN = 1.0f / NumSamples;
|
|
const float invNN = invN * invN;
|
|
// Simplify formula from the loop for ii == 0, add term for the delta
|
|
in[0] *= exp(A * 0.25) * (1 - invN);
|
|
if (!extraSample)
|
|
--NumSamples;
|
|
for (int ii = 1; ii < (int)NumSamples; ++ii) {
|
|
const float iOverN = ii * invN;
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
|
|
}
|
|
if (extraSample)
|
|
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
|
|
else {
|
|
// Slightly different
|
|
const float iOverN = NumSamples * invN;
|
|
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
wxFprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
|
|
}
|
|
}
|