mirror of
https://github.com/cookiengineer/audacity
synced 2025-06-17 00:20:06 +02:00
... Unnecessary because transitively included. But each .cpp file still includes its own .h file near the top to ensure that it compiles indenendently, even if it is reincluded transitively later.
693 lines
19 KiB
C++
693 lines
19 KiB
C++
/**********************************************************************
|
|
|
|
FFT.cpp
|
|
|
|
Dominic Mazzoni
|
|
|
|
September 2000
|
|
|
|
*******************************************************************//*!
|
|
|
|
\file FFT.cpp
|
|
\brief Fast Fourier Transform routines.
|
|
|
|
This file contains a few FFT routines, including a real-FFT
|
|
routine that is almost twice as fast as a normal complex FFT,
|
|
and a power spectrum routine when you know you don't care
|
|
about phase information.
|
|
|
|
Some of this code was based on a free implementation of an FFT
|
|
by Don Cross, available on the web at:
|
|
|
|
http://www.intersrv.com/~dcross/fft.html
|
|
|
|
The basic algorithm for his code was based on Numerican Recipes
|
|
in Fortran. I optimized his code further by reducing array
|
|
accesses, caching the bit reversal table, and eliminating
|
|
float-to-double conversions, and I added the routines to
|
|
calculate a real FFT and a real power spectrum.
|
|
|
|
*//*******************************************************************/
|
|
/*
|
|
Salvo Ventura - November 2006
|
|
Added more window functions:
|
|
* 4: Blackman
|
|
* 5: Blackman-Harris
|
|
* 6: Welch
|
|
* 7: Gaussian(a=2.5)
|
|
* 8: Gaussian(a=3.5)
|
|
* 9: Gaussian(a=4.5)
|
|
*/
|
|
|
|
#include "Audacity.h"
|
|
#include "FFT.h"
|
|
|
|
#include "Internat.h"
|
|
|
|
#include "SampleFormat.h"
|
|
|
|
#include <wx/wxcrtvararg.h>
|
|
#include <wx/intl.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#include "RealFFTf.h"
|
|
|
|
static ArraysOf<int> gFFTBitTable;
|
|
static const size_t MaxFastBits = 16;
|
|
|
|
/* Declare Static functions */
|
|
static void InitFFT();
|
|
|
|
static bool IsPowerOfTwo(size_t x)
|
|
{
|
|
if (x < 2)
|
|
return false;
|
|
|
|
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static size_t NumberOfBitsNeeded(size_t PowerOfTwo)
|
|
{
|
|
if (PowerOfTwo < 2) {
|
|
wxFprintf(stderr, "Error: FFT called with size %ld\n", PowerOfTwo);
|
|
exit(1);
|
|
}
|
|
|
|
size_t i = 0;
|
|
while (PowerOfTwo > 1)
|
|
PowerOfTwo >>= 1, ++i;
|
|
|
|
return i;
|
|
}
|
|
|
|
int ReverseBits(size_t index, size_t NumBits)
|
|
{
|
|
size_t i, rev;
|
|
|
|
for (i = rev = 0; i < NumBits; i++) {
|
|
rev = (rev << 1) | (index & 1);
|
|
index >>= 1;
|
|
}
|
|
|
|
return rev;
|
|
}
|
|
|
|
void InitFFT()
|
|
{
|
|
gFFTBitTable.reinit(MaxFastBits);
|
|
|
|
size_t len = 2;
|
|
for (size_t b = 1; b <= MaxFastBits; b++) {
|
|
auto &array = gFFTBitTable[b - 1];
|
|
array.reinit(len);
|
|
for (size_t i = 0; i < len; i++)
|
|
array[i] = ReverseBits(i, b);
|
|
|
|
len <<= 1;
|
|
}
|
|
}
|
|
|
|
void DeinitFFT()
|
|
{
|
|
gFFTBitTable.reset();
|
|
}
|
|
|
|
static inline size_t FastReverseBits(size_t i, size_t NumBits)
|
|
{
|
|
if (NumBits <= MaxFastBits)
|
|
return gFFTBitTable[NumBits - 1][i];
|
|
else
|
|
return ReverseBits(i, NumBits);
|
|
}
|
|
|
|
/*
|
|
* Complex Fast Fourier Transform
|
|
*/
|
|
|
|
void FFT(size_t NumSamples,
|
|
bool InverseTransform,
|
|
const float *RealIn, const float *ImagIn,
|
|
float *RealOut, float *ImagOut)
|
|
{
|
|
double angle_numerator = 2.0 * M_PI;
|
|
double tr, ti; /* temp real, temp imaginary */
|
|
|
|
if (!IsPowerOfTwo(NumSamples)) {
|
|
wxFprintf(stderr, "%ld is not a power of two\n", NumSamples);
|
|
exit(1);
|
|
}
|
|
|
|
if (!gFFTBitTable)
|
|
InitFFT();
|
|
|
|
if (!InverseTransform)
|
|
angle_numerator = -angle_numerator;
|
|
|
|
/* Number of bits needed to store indices */
|
|
auto NumBits = NumberOfBitsNeeded(NumSamples);
|
|
|
|
/*
|
|
** Do simultaneous data copy and bit-reversal ordering into outputs...
|
|
*/
|
|
|
|
for (size_t i = 0; i < NumSamples; i++) {
|
|
auto j = FastReverseBits(i, NumBits);
|
|
RealOut[j] = RealIn[i];
|
|
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
|
|
}
|
|
|
|
/*
|
|
** Do the FFT itself...
|
|
*/
|
|
|
|
size_t BlockEnd = 1;
|
|
for (size_t BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
|
|
|
|
double delta_angle = angle_numerator / (double) BlockSize;
|
|
|
|
double sm2 = sin(-2 * delta_angle);
|
|
double sm1 = sin(-delta_angle);
|
|
double cm2 = cos(-2 * delta_angle);
|
|
double cm1 = cos(-delta_angle);
|
|
double w = 2 * cm1;
|
|
double ar0, ar1, ar2, ai0, ai1, ai2;
|
|
|
|
for (size_t i = 0; i < NumSamples; i += BlockSize) {
|
|
ar2 = cm2;
|
|
ar1 = cm1;
|
|
|
|
ai2 = sm2;
|
|
ai1 = sm1;
|
|
|
|
for (size_t j = i, n = 0; n < BlockEnd; j++, n++) {
|
|
ar0 = w * ar1 - ar2;
|
|
ar2 = ar1;
|
|
ar1 = ar0;
|
|
|
|
ai0 = w * ai1 - ai2;
|
|
ai2 = ai1;
|
|
ai1 = ai0;
|
|
|
|
size_t k = j + BlockEnd;
|
|
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
|
|
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
|
|
|
|
RealOut[k] = RealOut[j] - tr;
|
|
ImagOut[k] = ImagOut[j] - ti;
|
|
|
|
RealOut[j] += tr;
|
|
ImagOut[j] += ti;
|
|
}
|
|
}
|
|
|
|
BlockEnd = BlockSize;
|
|
}
|
|
|
|
/*
|
|
** Need to normalize if inverse transform...
|
|
*/
|
|
|
|
if (InverseTransform) {
|
|
float denom = (float) NumSamples;
|
|
|
|
for (size_t i = 0; i < NumSamples; i++) {
|
|
RealOut[i] /= denom;
|
|
ImagOut[i] /= denom;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Real Fast Fourier Transform
|
|
*
|
|
* This is merely a wrapper of RealFFTf() from RealFFTf.h.
|
|
*/
|
|
|
|
void RealFFT(size_t NumSamples, const float *RealIn, float *RealOut, float *ImagOut)
|
|
{
|
|
auto hFFT = GetFFT(NumSamples);
|
|
Floats pFFT{ NumSamples };
|
|
// Copy the data into the processing buffer
|
|
for(size_t i = 0; i < NumSamples; i++)
|
|
pFFT[i] = RealIn[i];
|
|
|
|
// Perform the FFT
|
|
RealFFTf(pFFT.get(), hFFT.get());
|
|
|
|
// Copy the data into the real and imaginary outputs
|
|
for (size_t i = 1; i<(NumSamples / 2); i++) {
|
|
RealOut[i]=pFFT[hFFT->BitReversed[i] ];
|
|
ImagOut[i]=pFFT[hFFT->BitReversed[i]+1];
|
|
}
|
|
// Handle the (real-only) DC and Fs/2 bins
|
|
RealOut[0] = pFFT[0];
|
|
RealOut[NumSamples / 2] = pFFT[1];
|
|
ImagOut[0] = ImagOut[NumSamples / 2] = 0;
|
|
// Fill in the upper half using symmetry properties
|
|
for(size_t i = NumSamples / 2 + 1; i < NumSamples; i++) {
|
|
RealOut[i] = RealOut[NumSamples-i];
|
|
ImagOut[i] = -ImagOut[NumSamples-i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* InverseRealFFT
|
|
*
|
|
* This function computes the inverse of RealFFT, above.
|
|
* The RealIn and ImagIn is assumed to be conjugate-symmetric
|
|
* and as a result the output is purely real.
|
|
* Only the first half of RealIn and ImagIn are used due to this
|
|
* symmetry assumption.
|
|
*
|
|
* This is merely a wrapper of InverseRealFFTf() from RealFFTf.h.
|
|
*/
|
|
void InverseRealFFT(size_t NumSamples, const float *RealIn, const float *ImagIn,
|
|
float *RealOut)
|
|
{
|
|
auto hFFT = GetFFT(NumSamples);
|
|
Floats pFFT{ NumSamples };
|
|
// Copy the data into the processing buffer
|
|
for (size_t i = 0; i < (NumSamples / 2); i++)
|
|
pFFT[2*i ] = RealIn[i];
|
|
if(ImagIn == NULL) {
|
|
for (size_t i = 0; i < (NumSamples / 2); i++)
|
|
pFFT[2*i+1] = 0;
|
|
} else {
|
|
for (size_t i = 0; i < (NumSamples / 2); i++)
|
|
pFFT[2*i+1] = ImagIn[i];
|
|
}
|
|
// Put the fs/2 component in the imaginary part of the DC bin
|
|
pFFT[1] = RealIn[NumSamples / 2];
|
|
|
|
// Perform the FFT
|
|
InverseRealFFTf(pFFT.get(), hFFT.get());
|
|
|
|
// Copy the data to the (purely real) output buffer
|
|
ReorderToTime(hFFT.get(), pFFT.get(), RealOut);
|
|
}
|
|
|
|
/*
|
|
* PowerSpectrum
|
|
*
|
|
* This function uses RealFFTf() from RealFFTf.h to perform the real
|
|
* FFT computation, and then squares the real and imaginary part of
|
|
* each coefficient, extracting the power and throwing away the phase.
|
|
*
|
|
* For speed, it does not call RealFFT, but duplicates some
|
|
* of its code.
|
|
*/
|
|
|
|
void PowerSpectrum(size_t NumSamples, const float *In, float *Out)
|
|
{
|
|
auto hFFT = GetFFT(NumSamples);
|
|
Floats pFFT{ NumSamples };
|
|
// Copy the data into the processing buffer
|
|
for (size_t i = 0; i<NumSamples; i++)
|
|
pFFT[i] = In[i];
|
|
|
|
// Perform the FFT
|
|
RealFFTf(pFFT.get(), hFFT.get());
|
|
|
|
// Copy the data into the real and imaginary outputs
|
|
for (size_t i = 1; i<NumSamples / 2; i++) {
|
|
Out[i]= (pFFT[hFFT->BitReversed[i] ]*pFFT[hFFT->BitReversed[i] ])
|
|
+ (pFFT[hFFT->BitReversed[i]+1]*pFFT[hFFT->BitReversed[i]+1]);
|
|
}
|
|
// Handle the (real-only) DC and Fs/2 bins
|
|
Out[0] = pFFT[0]*pFFT[0];
|
|
Out[NumSamples / 2] = pFFT[1]*pFFT[1];
|
|
}
|
|
|
|
/*
|
|
* Windowing Functions
|
|
*/
|
|
|
|
int NumWindowFuncs()
|
|
{
|
|
return eWinFuncCount;
|
|
}
|
|
|
|
const wxChar *WindowFuncName(int whichFunction)
|
|
{
|
|
switch (whichFunction) {
|
|
default:
|
|
case eWinFuncRectangular:
|
|
return _("Rectangular");
|
|
case eWinFuncBartlett:
|
|
return wxT("Bartlett");
|
|
case eWinFuncHamming:
|
|
return wxT("Hamming");
|
|
case eWinFuncHanning:
|
|
return wxT("Hann");
|
|
case eWinFuncBlackman:
|
|
return wxT("Blackman");
|
|
case eWinFuncBlackmanHarris:
|
|
return wxT("Blackman-Harris");
|
|
case eWinFuncWelch:
|
|
return wxT("Welch");
|
|
case eWinFuncGaussian25:
|
|
return wxT("Gaussian(a=2.5)");
|
|
case eWinFuncGaussian35:
|
|
return wxT("Gaussian(a=3.5)");
|
|
case eWinFuncGaussian45:
|
|
return wxT("Gaussian(a=4.5)");
|
|
}
|
|
}
|
|
|
|
void NewWindowFunc(int whichFunction, size_t NumSamplesIn, bool extraSample, float *in)
|
|
{
|
|
int NumSamples = (int)NumSamplesIn;
|
|
if (extraSample) {
|
|
wxASSERT(NumSamples > 0);
|
|
--NumSamples;
|
|
}
|
|
wxASSERT(NumSamples > 0);
|
|
|
|
switch (whichFunction) {
|
|
default:
|
|
wxFprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
|
|
break;
|
|
case eWinFuncRectangular:
|
|
// Multiply all by 1.0f -- do nothing
|
|
break;
|
|
|
|
case eWinFuncBartlett:
|
|
{
|
|
// Bartlett (triangular) window
|
|
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
|
|
const float denom = NumSamples / 2.0f;
|
|
in[0] = 0.0f;
|
|
for (int ii = 1;
|
|
ii <= nPairs; // Yes, <=
|
|
++ii) {
|
|
const float value = ii / denom;
|
|
in[ii] *= value;
|
|
in[NumSamples - ii] *= value;
|
|
}
|
|
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
|
|
// When odd, the value of 1.0 is not reached
|
|
}
|
|
break;
|
|
case eWinFuncHamming:
|
|
{
|
|
// Hamming
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
static const double coeff0 = 0.54, coeff1 = -0.46;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
|
|
}
|
|
break;
|
|
case eWinFuncHanning:
|
|
{
|
|
// Hann
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
static const double coeff0 = 0.5, coeff1 = -0.5;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
|
|
}
|
|
break;
|
|
case eWinFuncBlackman:
|
|
{
|
|
// Blackman
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
|
|
}
|
|
break;
|
|
case eWinFuncBlackmanHarris:
|
|
{
|
|
// Blackman-Harris
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
const double multiplier3 = 3 * multiplier;
|
|
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
|
|
for (int ii = 0; ii < NumSamples; ++ii)
|
|
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
|
|
}
|
|
break;
|
|
case eWinFuncWelch:
|
|
{
|
|
// Welch
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
in[ii] *= 4 * iOverN * (1 - iOverN);
|
|
}
|
|
}
|
|
break;
|
|
case eWinFuncGaussian25:
|
|
{
|
|
// Gaussian (a=2.5)
|
|
// Precalculate some values, and simplify the fmla to try and reduce overhead
|
|
static const double A = -2 * 2.5*2.5;
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
// full
|
|
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
|
|
// reduced
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
|
}
|
|
}
|
|
break;
|
|
case eWinFuncGaussian35:
|
|
{
|
|
// Gaussian (a=3.5)
|
|
static const double A = -2 * 3.5*3.5;
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
|
}
|
|
}
|
|
break;
|
|
case eWinFuncGaussian45:
|
|
{
|
|
// Gaussian (a=4.5)
|
|
static const double A = -2 * 4.5*4.5;
|
|
const float N = NumSamples;
|
|
for (int ii = 0; ii < NumSamples; ++ii) {
|
|
const float iOverN = ii / N;
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (extraSample && whichFunction != eWinFuncRectangular) {
|
|
double value = 0.0;
|
|
switch (whichFunction) {
|
|
case eWinFuncHamming:
|
|
value = 0.08;
|
|
break;
|
|
case eWinFuncGaussian25:
|
|
value = exp(-2 * 2.5 * 2.5 * 0.25);
|
|
break;
|
|
case eWinFuncGaussian35:
|
|
value = exp(-2 * 3.5 * 3.5 * 0.25);
|
|
break;
|
|
case eWinFuncGaussian45:
|
|
value = exp(-2 * 4.5 * 4.5 * 0.25);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
in[NumSamples] *= value;
|
|
}
|
|
}
|
|
|
|
// See cautions in FFT.h !
|
|
void WindowFunc(int whichFunction, size_t NumSamples, float *in)
|
|
{
|
|
bool extraSample = false;
|
|
switch (whichFunction)
|
|
{
|
|
case eWinFuncHamming:
|
|
case eWinFuncHanning:
|
|
case eWinFuncBlackman:
|
|
case eWinFuncBlackmanHarris:
|
|
extraSample = true;
|
|
break;
|
|
default:
|
|
break;
|
|
case eWinFuncBartlett:
|
|
// PRL: Do nothing here either
|
|
// But I want to comment that the old function did this case
|
|
// wrong in the second half of the array, in case NumSamples was odd
|
|
// but I think that never happened, so I am not bothering to preserve that
|
|
break;
|
|
}
|
|
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
|
|
}
|
|
|
|
void DerivativeOfWindowFunc(int whichFunction, size_t NumSamples, bool extraSample, float *in)
|
|
{
|
|
if (eWinFuncRectangular == whichFunction)
|
|
{
|
|
// Rectangular
|
|
// There are deltas at the ends
|
|
wxASSERT(NumSamples > 0);
|
|
--NumSamples;
|
|
// in[0] *= 1.0f;
|
|
for (int ii = 1; ii < (int)NumSamples; ++ii)
|
|
in[ii] = 0.0f;
|
|
in[NumSamples] *= -1.0f;
|
|
return;
|
|
}
|
|
|
|
if (extraSample) {
|
|
wxASSERT(NumSamples > 0);
|
|
--NumSamples;
|
|
}
|
|
|
|
wxASSERT(NumSamples > 0);
|
|
|
|
double A;
|
|
switch (whichFunction) {
|
|
case eWinFuncBartlett:
|
|
{
|
|
// Bartlett (triangular) window
|
|
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
|
|
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
|
|
const float value = 2.0f / NumSamples;
|
|
in[0] *=
|
|
// Average the two limiting values of discontinuous derivative
|
|
value / 2.0f;
|
|
for (int ii = 1;
|
|
ii <= nPairs; // Yes, <=
|
|
++ii) {
|
|
in[ii] *= value;
|
|
in[NumSamples - ii] *= -value;
|
|
}
|
|
if (NumSamples % 2 == 0)
|
|
// Average the two limiting values of discontinuous derivative
|
|
in[NumSamples / 2] = 0.0f;
|
|
if (extraSample)
|
|
in[NumSamples] *=
|
|
// Average the two limiting values of discontinuous derivative
|
|
-value / 2.0f;
|
|
else
|
|
// Halve the multiplier previously applied
|
|
// Average the two limiting values of discontinuous derivative
|
|
in[NumSamples - 1] *= 0.5f;
|
|
}
|
|
break;
|
|
case eWinFuncHamming:
|
|
{
|
|
// Hamming
|
|
// There are deltas at the ends
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
|
|
// TODO This code should be more explicit about the precision it intends.
|
|
// For now we get C4305 warnings, truncation from 'const double' to 'float'
|
|
in[0] *= coeff0;
|
|
if (!extraSample)
|
|
--NumSamples;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier);
|
|
if (extraSample)
|
|
in[NumSamples] *= - coeff0;
|
|
else
|
|
// slightly different
|
|
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
|
|
}
|
|
break;
|
|
case eWinFuncHanning:
|
|
{
|
|
// Hann
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double coeff1 = -0.5 * multiplier;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier);
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
}
|
|
break;
|
|
case eWinFuncBlackman:
|
|
{
|
|
// Blackman
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
}
|
|
break;
|
|
case eWinFuncBlackmanHarris:
|
|
{
|
|
// Blackman-Harris
|
|
const double multiplier = 2 * M_PI / NumSamples;
|
|
const double multiplier2 = 2 * multiplier;
|
|
const double multiplier3 = 3 * multiplier;
|
|
const double coeff1 = -0.48829 * multiplier,
|
|
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii)
|
|
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
}
|
|
break;
|
|
case eWinFuncWelch:
|
|
{
|
|
// Welch
|
|
const float N = NumSamples;
|
|
const float NN = NumSamples * NumSamples;
|
|
for (int ii = 0; ii < (int)NumSamples; ++ii) {
|
|
in[ii] *= 4 * (N - ii - ii) / NN;
|
|
}
|
|
if (extraSample)
|
|
in[NumSamples] = 0.0f;
|
|
// Average the two limiting values of discontinuous derivative
|
|
in[0] /= 2.0f;
|
|
in[NumSamples - 1] /= 2.0f;
|
|
}
|
|
break;
|
|
case eWinFuncGaussian25:
|
|
// Gaussian (a=2.5)
|
|
A = -2 * 2.5*2.5;
|
|
goto Gaussian;
|
|
case eWinFuncGaussian35:
|
|
// Gaussian (a=3.5)
|
|
A = -2 * 3.5*3.5;
|
|
goto Gaussian;
|
|
case eWinFuncGaussian45:
|
|
// Gaussian (a=4.5)
|
|
A = -2 * 4.5*4.5;
|
|
goto Gaussian;
|
|
Gaussian:
|
|
{
|
|
// Gaussian (a=2.5)
|
|
// There are deltas at the ends
|
|
const float invN = 1.0f / NumSamples;
|
|
const float invNN = invN * invN;
|
|
// Simplify formula from the loop for ii == 0, add term for the delta
|
|
in[0] *= exp(A * 0.25) * (1 - invN);
|
|
if (!extraSample)
|
|
--NumSamples;
|
|
for (int ii = 1; ii < (int)NumSamples; ++ii) {
|
|
const float iOverN = ii * invN;
|
|
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
|
|
}
|
|
if (extraSample)
|
|
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
|
|
else {
|
|
// Slightly different
|
|
const float iOverN = NumSamples * invN;
|
|
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
wxFprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
|
|
}
|
|
}
|