mirror of
				https://github.com/cookiengineer/audacity
				synced 2025-10-31 14:13:50 +01:00 
			
		
		
		
	Using LAME 3.10 Windows project files substantially changed from original, and included into audacity solution.
		
			
				
	
	
		
			1376 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1376 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	MP3 huffman table selecting and bit counting
 | |
|  *
 | |
|  *	Copyright (c) 1999-2005 Takehiro TOMINAGA
 | |
|  *	Copyright (c) 2002-2005 Gabriel Bouvigne
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Library General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 | |
|  * Library General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Library General Public
 | |
|  * License along with this library; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 02111-1307, USA.
 | |
|  */
 | |
| 
 | |
| /* $Id: takehiro.c,v 1.80 2017/09/06 15:07:30 robert Exp $ */
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| # include <config.h>
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #include "lame.h"
 | |
| #include "machine.h"
 | |
| #include "encoder.h"
 | |
| #include "util.h"
 | |
| #include "quantize_pvt.h"
 | |
| #include "tables.h"
 | |
| 
 | |
| 
 | |
| static const struct {
 | |
|     const int region0_count;
 | |
|     const int region1_count;
 | |
| } subdv_table[23] = {
 | |
|     {
 | |
|     0, 0},              /* 0 bands */
 | |
|     {
 | |
|     0, 0},              /* 1 bands */
 | |
|     {
 | |
|     0, 0},              /* 2 bands */
 | |
|     {
 | |
|     0, 0},              /* 3 bands */
 | |
|     {
 | |
|     0, 0},              /* 4 bands */
 | |
|     {
 | |
|     0, 1},              /* 5 bands */
 | |
|     {
 | |
|     1, 1},              /* 6 bands */
 | |
|     {
 | |
|     1, 1},              /* 7 bands */
 | |
|     {
 | |
|     1, 2},              /* 8 bands */
 | |
|     {
 | |
|     2, 2},              /* 9 bands */
 | |
|     {
 | |
|     2, 3},              /* 10 bands */
 | |
|     {
 | |
|     2, 3},              /* 11 bands */
 | |
|     {
 | |
|     3, 4},              /* 12 bands */
 | |
|     {
 | |
|     3, 4},              /* 13 bands */
 | |
|     {
 | |
|     3, 4},              /* 14 bands */
 | |
|     {
 | |
|     4, 5},              /* 15 bands */
 | |
|     {
 | |
|     4, 5},              /* 16 bands */
 | |
|     {
 | |
|     4, 6},              /* 17 bands */
 | |
|     {
 | |
|     5, 6},              /* 18 bands */
 | |
|     {
 | |
|     5, 6},              /* 19 bands */
 | |
|     {
 | |
|     5, 7},              /* 20 bands */
 | |
|     {
 | |
|     6, 7},              /* 21 bands */
 | |
|     {
 | |
|     6, 7},              /* 22 bands */
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*********************************************************************
 | |
|  * nonlinear quantization of xr 
 | |
|  * More accurate formula than the ISO formula.  Takes into account
 | |
|  * the fact that we are quantizing xr -> ix, but we want ix^4/3 to be 
 | |
|  * as close as possible to x^4/3.  (taking the nearest int would mean
 | |
|  * ix is as close as possible to xr, which is different.)
 | |
|  *
 | |
|  * From Segher Boessenkool <segher@eastsite.nl>  11/1999
 | |
|  *
 | |
|  * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro
 | |
|  * Tominaga. If you need the ASM code, check CVS circa Aug 2000.
 | |
|  *
 | |
|  * 01/2004: Optimizations by Gabriel Bouvigne
 | |
|  *********************************************************************/
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| static void
 | |
| quantize_lines_xrpow_01(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
 | |
| {
 | |
|     const FLOAT compareval0 = (1.0f - 0.4054f) / istep;
 | |
|     unsigned int i;
 | |
| 
 | |
|     assert(l > 0);
 | |
|     assert(l % 2 == 0);
 | |
|     for (i = 0; i < l; i += 2) {
 | |
|         FLOAT const xr_0 = xr[i+0];
 | |
|         FLOAT const xr_1 = xr[i+1];
 | |
|         int const ix_0 = (compareval0 > xr_0) ? 0 : 1;
 | |
|         int const ix_1 = (compareval0 > xr_1) ? 0 : 1;
 | |
|         ix[i+0] = ix_0;
 | |
|         ix[i+1] = ix_1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef TAKEHIRO_IEEE754_HACK
 | |
| 
 | |
| typedef union {
 | |
|     float   f;
 | |
|     int     i;
 | |
| } fi_union;
 | |
| 
 | |
| #define MAGIC_FLOAT (65536*(128))
 | |
| #define MAGIC_INT 0x4b000000
 | |
| 
 | |
| 
 | |
| static void
 | |
| quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xp, int *pi)
 | |
| {
 | |
|     fi_union *fi;
 | |
|     unsigned int remaining;
 | |
| 
 | |
|     assert(l > 0);
 | |
| 
 | |
|     fi = (fi_union *) pi;
 | |
| 
 | |
|     l = l >> 1;
 | |
|     remaining = l % 2;
 | |
|     l = l >> 1;
 | |
|     while (l--) {
 | |
|         double  x0 = istep * xp[0];
 | |
|         double  x1 = istep * xp[1];
 | |
|         double  x2 = istep * xp[2];
 | |
|         double  x3 = istep * xp[3];
 | |
| 
 | |
|         x0 += MAGIC_FLOAT;
 | |
|         fi[0].f = x0;
 | |
|         x1 += MAGIC_FLOAT;
 | |
|         fi[1].f = x1;
 | |
|         x2 += MAGIC_FLOAT;
 | |
|         fi[2].f = x2;
 | |
|         x3 += MAGIC_FLOAT;
 | |
|         fi[3].f = x3;
 | |
| 
 | |
|         fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
 | |
|         fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
 | |
|         fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT];
 | |
|         fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT];
 | |
| 
 | |
|         fi[0].i -= MAGIC_INT;
 | |
|         fi[1].i -= MAGIC_INT;
 | |
|         fi[2].i -= MAGIC_INT;
 | |
|         fi[3].i -= MAGIC_INT;
 | |
|         fi += 4;
 | |
|         xp += 4;
 | |
|     };
 | |
|     if (remaining) {
 | |
|         double  x0 = istep * xp[0];
 | |
|         double  x1 = istep * xp[1];
 | |
| 
 | |
|         x0 += MAGIC_FLOAT;
 | |
|         fi[0].f = x0;
 | |
|         x1 += MAGIC_FLOAT;
 | |
|         fi[1].f = x1;
 | |
| 
 | |
|         fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
 | |
|         fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
 | |
| 
 | |
|         fi[0].i -= MAGIC_INT;
 | |
|         fi[1].i -= MAGIC_INT;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*********************************************************************
 | |
|  * XRPOW_FTOI is a macro to convert floats to ints.  
 | |
|  * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
 | |
|  *                                         ROUNDFAC= -0.0946
 | |
|  *
 | |
|  * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]   
 | |
|  *                                   ROUNDFAC=0.4054
 | |
|  *
 | |
|  * Note: using floor() or (int) is extremely slow. On machines where
 | |
|  * the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
 | |
|  * to write some ASM for XRPOW_FTOI().  
 | |
|  *********************************************************************/
 | |
| #define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
 | |
| #define QUANTFAC(rx)  adj43[rx]
 | |
| #define ROUNDFAC 0.4054
 | |
| 
 | |
| 
 | |
| static void
 | |
| quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
 | |
| {
 | |
|     unsigned int remaining;
 | |
| 
 | |
|     assert(l > 0);
 | |
| 
 | |
|     l = l >> 1;
 | |
|     remaining = l % 2;
 | |
|     l = l >> 1;
 | |
|     while (l--) {
 | |
|         FLOAT   x0, x1, x2, x3;
 | |
|         int     rx0, rx1, rx2, rx3;
 | |
| 
 | |
|         x0 = *xr++ * istep;
 | |
|         x1 = *xr++ * istep;
 | |
|         XRPOW_FTOI(x0, rx0);
 | |
|         x2 = *xr++ * istep;
 | |
|         XRPOW_FTOI(x1, rx1);
 | |
|         x3 = *xr++ * istep;
 | |
|         XRPOW_FTOI(x2, rx2);
 | |
|         x0 += QUANTFAC(rx0);
 | |
|         XRPOW_FTOI(x3, rx3);
 | |
|         x1 += QUANTFAC(rx1);
 | |
|         XRPOW_FTOI(x0, *ix++);
 | |
|         x2 += QUANTFAC(rx2);
 | |
|         XRPOW_FTOI(x1, *ix++);
 | |
|         x3 += QUANTFAC(rx3);
 | |
|         XRPOW_FTOI(x2, *ix++);
 | |
|         XRPOW_FTOI(x3, *ix++);
 | |
|     };
 | |
|     if (remaining) {
 | |
|         FLOAT   x0, x1;
 | |
|         int     rx0, rx1;
 | |
| 
 | |
|         x0 = *xr++ * istep;
 | |
|         x1 = *xr++ * istep;
 | |
|         XRPOW_FTOI(x0, rx0);
 | |
|         XRPOW_FTOI(x1, rx1);
 | |
|         x0 += QUANTFAC(rx0);
 | |
|         x1 += QUANTFAC(rx1);
 | |
|         XRPOW_FTOI(x0, *ix++);
 | |
|         XRPOW_FTOI(x1, *ix++);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| /*********************************************************************
 | |
|  * Quantization function
 | |
|  * This function will select which lines to quantize and call the
 | |
|  * proper quantization function
 | |
|  *********************************************************************/
 | |
| 
 | |
| static void
 | |
| quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info,
 | |
|                calc_noise_data const *prev_noise)
 | |
| {
 | |
|     /* quantize on xr^(3/4) instead of xr */
 | |
|     int     sfb;
 | |
|     int     sfbmax;
 | |
|     int     j = 0;
 | |
|     int     prev_data_use;
 | |
|     int    *iData;
 | |
|     int     accumulate = 0;
 | |
|     int     accumulate01 = 0;
 | |
|     int    *acc_iData;
 | |
|     const FLOAT *acc_xp;
 | |
| 
 | |
|     iData = pi;
 | |
|     acc_xp = xp;
 | |
|     acc_iData = iData;
 | |
| 
 | |
| 
 | |
|     /* Reusing previously computed data does not seems to work if global gain
 | |
|        is changed. Finding why it behaves this way would allow to use a cache of 
 | |
|        previously computed values (let's 10 cached values per sfb) that would 
 | |
|        probably provide a noticeable speedup */
 | |
|     prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain));
 | |
| 
 | |
|     if (cod_info->block_type == SHORT_TYPE)
 | |
|         sfbmax = 38;
 | |
|     else
 | |
|         sfbmax = 21;
 | |
| 
 | |
|     for (sfb = 0; sfb <= sfbmax; sfb++) {
 | |
|         int     step = -1;
 | |
| 
 | |
|         if (prev_data_use || cod_info->block_type == NORM_TYPE) {
 | |
|             step =
 | |
|                 cod_info->global_gain
 | |
|                 - ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0))
 | |
|                    << (cod_info->scalefac_scale + 1))
 | |
|                 - cod_info->subblock_gain[cod_info->window[sfb]] * 8;
 | |
|         }
 | |
|         assert(cod_info->width[sfb] >= 0);
 | |
|         if (prev_data_use && (prev_noise->step[sfb] == step)) {
 | |
|             /* do not recompute this part,
 | |
|                but compute accumulated lines */
 | |
|             if (accumulate) {
 | |
|                 quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
 | |
|                 accumulate = 0;
 | |
|             }
 | |
|             if (accumulate01) {
 | |
|                 quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
 | |
|                 accumulate01 = 0;
 | |
|             }
 | |
|         }
 | |
|         else {          /*should compute this part */
 | |
|             int     l;
 | |
|             l = cod_info->width[sfb];
 | |
| 
 | |
|             if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) {
 | |
|                 /*do not compute upper zero part */
 | |
|                 int     usefullsize;
 | |
|                 usefullsize = cod_info->max_nonzero_coeff - j + 1;
 | |
|                 memset(&pi[cod_info->max_nonzero_coeff], 0,
 | |
|                        sizeof(int) * (576 - cod_info->max_nonzero_coeff));
 | |
|                 l = usefullsize;
 | |
| 
 | |
|                 if (l < 0) {
 | |
|                     l = 0;
 | |
|                 }
 | |
| 
 | |
|                 /* no need to compute higher sfb values */
 | |
|                 sfb = sfbmax + 1;
 | |
|             }
 | |
| 
 | |
|             /*accumulate lines to quantize */
 | |
|             if (!accumulate && !accumulate01) {
 | |
|                 acc_iData = iData;
 | |
|                 acc_xp = xp;
 | |
|             }
 | |
|             if (prev_noise &&
 | |
|                 prev_noise->sfb_count1 > 0 &&
 | |
|                 sfb >= prev_noise->sfb_count1 &&
 | |
|                 prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) {
 | |
| 
 | |
|                 if (accumulate) {
 | |
|                     quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
 | |
|                     accumulate = 0;
 | |
|                     acc_iData = iData;
 | |
|                     acc_xp = xp;
 | |
|                 }
 | |
|                 accumulate01 += l;
 | |
|             }
 | |
|             else {
 | |
|                 if (accumulate01) {
 | |
|                     quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
 | |
|                     accumulate01 = 0;
 | |
|                     acc_iData = iData;
 | |
|                     acc_xp = xp;
 | |
|                 }
 | |
|                 accumulate += l;
 | |
|             }
 | |
| 
 | |
|             if (l <= 0) {
 | |
|                 /*  rh: 20040215
 | |
|                  *  may happen due to "prev_data_use" optimization 
 | |
|                  */
 | |
|                 if (accumulate01) {
 | |
|                     quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
 | |
|                     accumulate01 = 0;
 | |
|                 }
 | |
|                 if (accumulate) {
 | |
|                     quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
 | |
|                     accumulate = 0;
 | |
|                 }
 | |
| 
 | |
|                 break;  /* ends for-loop */
 | |
|             }
 | |
|         }
 | |
|         if (sfb <= sfbmax) {
 | |
|             iData += cod_info->width[sfb];
 | |
|             xp += cod_info->width[sfb];
 | |
|             j += cod_info->width[sfb];
 | |
|         }
 | |
|     }
 | |
|     if (accumulate) {   /*last data part */
 | |
|         quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
 | |
|         accumulate = 0;
 | |
|     }
 | |
|     if (accumulate01) { /*last data part */
 | |
|         quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
 | |
|         accumulate01 = 0;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*	      ix_max							 */
 | |
| /*************************************************************************/
 | |
| 
 | |
| static int
 | |
| ix_max(const int *ix, const int *end)
 | |
| {
 | |
|     int     max1 = 0, max2 = 0;
 | |
| 
 | |
|     do {
 | |
|         int const x1 = *ix++;
 | |
|         int const x2 = *ix++;
 | |
|         if (max1 < x1)
 | |
|             max1 = x1;
 | |
| 
 | |
|         if (max2 < x2)
 | |
|             max2 = x2;
 | |
|     } while (ix < end);
 | |
|     if (max1 < max2)
 | |
|         max1 = max2;
 | |
|     return max1;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| static int
 | |
| count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, unsigned int *const s)
 | |
| {
 | |
|     /* ESC-table is used */
 | |
|     unsigned int const linbits = ht[t1].xlen * 65536u + ht[t2].xlen;
 | |
|     unsigned int sum = 0, sum2;
 | |
| 
 | |
|     do {
 | |
|         unsigned int x = *ix++;
 | |
|         unsigned int y = *ix++;
 | |
| 
 | |
|         if (x >= 15u) {
 | |
|             x = 15u;
 | |
|             sum += linbits;
 | |
|         }
 | |
|         if (y >= 15u) {
 | |
|             y = 15u;
 | |
|             sum += linbits;
 | |
|         }
 | |
|         x <<= 4u;
 | |
|         x += y;
 | |
|         sum += largetbl[x];
 | |
|     } while (ix < end);
 | |
| 
 | |
|     sum2 = sum & 0xffffu;
 | |
|     sum >>= 16u;
 | |
| 
 | |
|     if (sum > sum2) {
 | |
|         sum = sum2;
 | |
|         t1 = t2;
 | |
|     }
 | |
| 
 | |
|     *s += sum;
 | |
|     return t1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| count_bit_noESC(const int *ix, const int *end, int mx, unsigned int *s)
 | |
| {
 | |
|     /* No ESC-words */
 | |
|     unsigned int sum1 = 0;
 | |
|     const uint8_t *const hlen1 = ht[1].hlen;
 | |
|     (void) mx;
 | |
| 
 | |
|     do {
 | |
|         unsigned int const x0 = *ix++;
 | |
|         unsigned int const x1 = *ix++;
 | |
|         sum1 += hlen1[ x0+x0 + x1 ];
 | |
|     } while (ix < end);
 | |
| 
 | |
|     *s += sum1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static const int huf_tbl_noESC[] = {
 | |
|     1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13
 | |
| };
 | |
| 
 | |
| 
 | |
| static int
 | |
| count_bit_noESC_from2(const int *ix, const int *end, int max, unsigned int *s)
 | |
| {
 | |
|     int t1 = huf_tbl_noESC[max - 1];
 | |
|     /* No ESC-words */
 | |
|     const unsigned int xlen = ht[t1].xlen;
 | |
|     uint32_t const* table = (t1 == 2) ? &table23[0] : &table56[0];
 | |
|     unsigned int sum = 0, sum2;
 | |
| 
 | |
|     do {
 | |
|         unsigned int const x0 = *ix++;
 | |
|         unsigned int const x1 = *ix++;
 | |
|         sum += table[ x0 * xlen + x1 ];
 | |
|     } while (ix < end);
 | |
| 
 | |
|     sum2 = sum & 0xffffu;
 | |
|     sum >>= 16u;
 | |
| 
 | |
|     if (sum > sum2) {
 | |
|         sum = sum2;
 | |
|         t1++;
 | |
|     }
 | |
| 
 | |
|     *s += sum;
 | |
|     return t1;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline static int
 | |
| count_bit_noESC_from3(const int *ix, const int *end, int max, unsigned int * s)
 | |
| {
 | |
|     int t1 = huf_tbl_noESC[max - 1];
 | |
|     /* No ESC-words */
 | |
|     unsigned int sum1 = 0;
 | |
|     unsigned int sum2 = 0;
 | |
|     unsigned int sum3 = 0;
 | |
|     const unsigned int xlen = ht[t1].xlen;
 | |
|     const uint8_t *const hlen1 = ht[t1].hlen;
 | |
|     const uint8_t *const hlen2 = ht[t1 + 1].hlen;
 | |
|     const uint8_t *const hlen3 = ht[t1 + 2].hlen;
 | |
|     int     t;
 | |
| 
 | |
|     do {
 | |
|         unsigned int x0 = *ix++;
 | |
|         unsigned int x1 = *ix++;
 | |
|         unsigned int x = x0 * xlen + x1;
 | |
|         sum1 += hlen1[x];
 | |
|         sum2 += hlen2[x];
 | |
|         sum3 += hlen3[x];
 | |
|     } while (ix < end);
 | |
| 
 | |
|     t = t1;
 | |
|     if (sum1 > sum2) {
 | |
|         sum1 = sum2;
 | |
|         t++;
 | |
|     }
 | |
|     if (sum1 > sum3) {
 | |
|         sum1 = sum3;
 | |
|         t = t1 + 2;
 | |
|     }
 | |
|     *s += sum1;
 | |
| 
 | |
|     return t;  
 | |
| }
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*	      choose table						 */
 | |
| /*************************************************************************/
 | |
| 
 | |
| /*
 | |
|   Choose the Huffman table that will encode ix[begin..end] with
 | |
|   the fewest bits.
 | |
| 
 | |
|   Note: This code contains knowledge about the sizes and characteristics
 | |
|   of the Huffman tables as defined in the IS (Table B.7), and will not work
 | |
|   with any arbitrary tables.
 | |
| */
 | |
| static int count_bit_null(const int* ix, const int* end, int max, unsigned int* s)
 | |
| {
 | |
|     (void) ix;
 | |
|     (void) end;
 | |
|     (void) max;
 | |
|     (void) s;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef int (*count_fnc)(const int* ix, const int* end, int max, unsigned int* s);
 | |
|   
 | |
| static const count_fnc count_fncs[] = 
 | |
| { &count_bit_null
 | |
| , &count_bit_noESC
 | |
| , &count_bit_noESC_from2
 | |
| , &count_bit_noESC_from2
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| , &count_bit_noESC_from3
 | |
| };
 | |
| 
 | |
| static int
 | |
| choose_table_nonMMX(const int *ix, const int *const end, int *const _s)
 | |
| {
 | |
|     unsigned int* s = (unsigned int*)_s;
 | |
|     unsigned int  max;
 | |
|     int     choice, choice2;
 | |
|     max = ix_max(ix, end);
 | |
| 
 | |
|     if (max <= 15) {
 | |
|       return count_fncs[max](ix, end, max, s);
 | |
|     }
 | |
|     /* try tables with linbits */
 | |
|     if (max > IXMAX_VAL) {
 | |
|         *s = LARGE_BITS;
 | |
|         return -1;
 | |
|     }
 | |
|     max -= 15u;
 | |
|     for (choice2 = 24; choice2 < 32; choice2++) {
 | |
|         if (ht[choice2].linmax >= max) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (choice = choice2 - 8; choice < 24; choice++) {
 | |
|         if (ht[choice].linmax >= max) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count_bit_ESC(ix, end, choice, choice2, s);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*	      count_bit							 */
 | |
| /*************************************************************************/
 | |
| int
 | |
| noquant_count_bits(lame_internal_flags const *const gfc,
 | |
|                    gr_info * const gi, calc_noise_data * prev_noise)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     int     bits = 0;
 | |
|     int     i, a1, a2;
 | |
|     int const *const ix = gi->l3_enc;
 | |
| 
 | |
|     i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1);
 | |
| 
 | |
|     if (prev_noise)
 | |
|         prev_noise->sfb_count1 = 0;
 | |
| 
 | |
|     /* Determine count1 region */
 | |
|     for (; i > 1; i -= 2)
 | |
|         if (ix[i - 1] | ix[i - 2])
 | |
|             break;
 | |
|     gi->count1 = i;
 | |
| 
 | |
|     /* Determines the number of bits to encode the quadruples. */
 | |
|     a1 = a2 = 0;
 | |
|     for (; i > 3; i -= 4) {
 | |
|         int x4 = ix[i-4];
 | |
|         int x3 = ix[i-3];
 | |
|         int x2 = ix[i-2];
 | |
|         int x1 = ix[i-1];
 | |
|         int     p;
 | |
|         /* hack to check if all values <= 1 */
 | |
|         if ((unsigned int) (x4 | x3 | x2 | x1) > 1)
 | |
|             break;
 | |
| 
 | |
|         p = ((x4 * 2 + x3) * 2 + x2) * 2 + x1;
 | |
|         a1 += t32l[p];
 | |
|         a2 += t33l[p];
 | |
|     }
 | |
| 
 | |
|     bits = a1;
 | |
|     gi->count1table_select = 0;
 | |
|     if (a1 > a2) {
 | |
|         bits = a2;
 | |
|         gi->count1table_select = 1;
 | |
|     }
 | |
| 
 | |
|     gi->count1bits = bits;
 | |
|     gi->big_values = i;
 | |
|     if (i == 0)
 | |
|         return bits;
 | |
| 
 | |
|     if (gi->block_type == SHORT_TYPE) {
 | |
|         a1 = 3 * gfc->scalefac_band.s[3];
 | |
|         if (a1 > gi->big_values)
 | |
|             a1 = gi->big_values;
 | |
|         a2 = gi->big_values;
 | |
| 
 | |
|     }
 | |
|     else if (gi->block_type == NORM_TYPE) {
 | |
|         assert(i <= 576); /* bv_scf has 576 entries (0..575) */
 | |
|         a1 = gi->region0_count = gfc->sv_qnt.bv_scf[i - 2];
 | |
|         a2 = gi->region1_count = gfc->sv_qnt.bv_scf[i - 1];
 | |
| 
 | |
|         assert(a1 + a2 + 2 < SBPSY_l);
 | |
|         a2 = gfc->scalefac_band.l[a1 + a2 + 2];
 | |
|         a1 = gfc->scalefac_band.l[a1 + 1];
 | |
|         if (a2 < i)
 | |
|             gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits);
 | |
| 
 | |
|     }
 | |
|     else {
 | |
|         gi->region0_count = 7;
 | |
|         /*gi->region1_count = SBPSY_l - 7 - 1; */
 | |
|         gi->region1_count = SBMAX_l - 1 - 7 - 1;
 | |
|         a1 = gfc->scalefac_band.l[7 + 1];
 | |
|         a2 = i;
 | |
|         if (a1 > a2) {
 | |
|             a1 = a2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* have to allow for the case when bigvalues < region0 < region1 */
 | |
|     /* (and region0, region1 are ignored) */
 | |
|     a1 = Min(a1, i);
 | |
|     a2 = Min(a2, i);
 | |
| 
 | |
|     assert(a1 >= 0);
 | |
|     assert(a2 >= 0);
 | |
| 
 | |
|     /* Count the number of bits necessary to code the bigvalues region. */
 | |
|     if (0 < a1)
 | |
|         gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits);
 | |
|     if (a1 < a2)
 | |
|         gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits);
 | |
|     if (cfg->use_best_huffman == 2) {
 | |
|         gi->part2_3_length = bits;
 | |
|         best_huffman_divide(gfc, gi);
 | |
|         bits = gi->part2_3_length;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (prev_noise) {
 | |
|         if (gi->block_type == NORM_TYPE) {
 | |
|             int     sfb = 0;
 | |
|             while (gfc->scalefac_band.l[sfb] < gi->big_values) {
 | |
|                 sfb++;
 | |
|             }
 | |
|             prev_noise->sfb_count1 = sfb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| int
 | |
| count_bits(lame_internal_flags const *const gfc,
 | |
|            const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise)
 | |
| {
 | |
|     int    *const ix = gi->l3_enc;
 | |
| 
 | |
|     /* since quantize_xrpow uses table lookup, we need to check this first: */
 | |
|     FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain);
 | |
| 
 | |
|     if (gi->xrpow_max > w)
 | |
|         return LARGE_BITS;
 | |
| 
 | |
|     quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise);
 | |
| 
 | |
|     if (gfc->sv_qnt.substep_shaping & 2) {
 | |
|         int     sfb, j = 0;
 | |
|         /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
 | |
|         int const gain = gi->global_gain + gi->scalefac_scale;
 | |
|         const FLOAT roundfac = 0.634521682242439 / IPOW20(gain);
 | |
|         for (sfb = 0; sfb < gi->sfbmax; sfb++) {
 | |
|             int const width = gi->width[sfb];
 | |
|             assert(width >= 0);
 | |
|             if (!gfc->sv_qnt.pseudohalf[sfb]) {
 | |
|                 j += width;
 | |
|             }
 | |
|             else {
 | |
|                 int     k;
 | |
|                 for (k = j, j += width; k < j; ++k) {
 | |
|                     ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return noquant_count_bits(gfc, gi, prev_noise);
 | |
| }
 | |
| 
 | |
| /***********************************************************************
 | |
|   re-calculate the best scalefac_compress using scfsi
 | |
|   the saved bits are kept in the bit reservoir.
 | |
|  **********************************************************************/
 | |
| 
 | |
| 
 | |
| inline static void
 | |
| recalc_divide_init(const lame_internal_flags * const gfc,
 | |
|                    gr_info const *cod_info,
 | |
|                    int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[])
 | |
| {
 | |
|     int     r0, r1, bigv, r0t, r1t, bits;
 | |
| 
 | |
|     bigv = cod_info->big_values;
 | |
| 
 | |
|     for (r0 = 0; r0 <= 7 + 15; r0++) {
 | |
|         r01_bits[r0] = LARGE_BITS;
 | |
|     }
 | |
| 
 | |
|     for (r0 = 0; r0 < 16; r0++) {
 | |
|         int const a1 = gfc->scalefac_band.l[r0 + 1];
 | |
|         int     r0bits;
 | |
|         if (a1 >= bigv)
 | |
|             break;
 | |
|         r0bits = 0;
 | |
|         r0t = gfc->choose_table(ix, ix + a1, &r0bits);
 | |
| 
 | |
|         for (r1 = 0; r1 < 8; r1++) {
 | |
|             int const a2 = gfc->scalefac_band.l[r0 + r1 + 2];
 | |
|             if (a2 >= bigv)
 | |
|                 break;
 | |
| 
 | |
|             bits = r0bits;
 | |
|             r1t = gfc->choose_table(ix + a1, ix + a2, &bits);
 | |
|             if (r01_bits[r0 + r1] > bits) {
 | |
|                 r01_bits[r0 + r1] = bits;
 | |
|                 r01_div[r0 + r1] = r0;
 | |
|                 r0_tbl[r0 + r1] = r0t;
 | |
|                 r1_tbl[r0 + r1] = r1t;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static void
 | |
| recalc_divide_sub(const lame_internal_flags * const gfc,
 | |
|                   const gr_info * cod_info2,
 | |
|                   gr_info * const gi,
 | |
|                   const int *const ix,
 | |
|                   const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[])
 | |
| {
 | |
|     int     bits, r2, a2, bigv, r2t;
 | |
| 
 | |
|     bigv = cod_info2->big_values;
 | |
| 
 | |
|     for (r2 = 2; r2 < SBMAX_l + 1; r2++) {
 | |
|         a2 = gfc->scalefac_band.l[r2];
 | |
|         if (a2 >= bigv)
 | |
|             break;
 | |
| 
 | |
|         bits = r01_bits[r2 - 2] + cod_info2->count1bits;
 | |
|         if (gi->part2_3_length <= bits)
 | |
|             break;
 | |
| 
 | |
|         r2t = gfc->choose_table(ix + a2, ix + bigv, &bits);
 | |
|         if (gi->part2_3_length <= bits)
 | |
|             continue;
 | |
| 
 | |
|         memcpy(gi, cod_info2, sizeof(gr_info));
 | |
|         gi->part2_3_length = bits;
 | |
|         gi->region0_count = r01_div[r2 - 2];
 | |
|         gi->region1_count = r2 - 2 - r01_div[r2 - 2];
 | |
|         gi->table_select[0] = r0_tbl[r2 - 2];
 | |
|         gi->table_select[1] = r1_tbl[r2 - 2];
 | |
|         gi->table_select[2] = r2t;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void
 | |
| best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     int     i, a1, a2;
 | |
|     gr_info cod_info2;
 | |
|     int const *const ix = gi->l3_enc;
 | |
| 
 | |
|     int     r01_bits[7 + 15 + 1];
 | |
|     int     r01_div[7 + 15 + 1];
 | |
|     int     r0_tbl[7 + 15 + 1];
 | |
|     int     r1_tbl[7 + 15 + 1];
 | |
| 
 | |
| 
 | |
|     /* SHORT BLOCK stuff fails for MPEG2 */
 | |
|     if (gi->block_type == SHORT_TYPE && cfg->mode_gr == 1)
 | |
|         return;
 | |
| 
 | |
| 
 | |
|     memcpy(&cod_info2, gi, sizeof(gr_info));
 | |
|     if (gi->block_type == NORM_TYPE) {
 | |
|         recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
 | |
|         recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
 | |
|     }
 | |
| 
 | |
|     i = cod_info2.big_values;
 | |
|     if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1)
 | |
|         return;
 | |
| 
 | |
|     i = gi->count1 + 2;
 | |
|     if (i > 576)
 | |
|         return;
 | |
| 
 | |
|     /* Determines the number of bits to encode the quadruples. */
 | |
|     memcpy(&cod_info2, gi, sizeof(gr_info));
 | |
|     cod_info2.count1 = i;
 | |
|     a1 = a2 = 0;
 | |
| 
 | |
|     assert(i <= 576);
 | |
| 
 | |
|     for (; i > cod_info2.big_values; i -= 4) {
 | |
|         int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
 | |
|         a1 += t32l[p];
 | |
|         a2 += t33l[p];
 | |
|     }
 | |
|     cod_info2.big_values = i;
 | |
| 
 | |
|     cod_info2.count1table_select = 0;
 | |
|     if (a1 > a2) {
 | |
|         a1 = a2;
 | |
|         cod_info2.count1table_select = 1;
 | |
|     }
 | |
| 
 | |
|     cod_info2.count1bits = a1;
 | |
| 
 | |
|     if (cod_info2.block_type == NORM_TYPE)
 | |
|         recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
 | |
|     else {
 | |
|         /* Count the number of bits necessary to code the bigvalues region. */
 | |
|         cod_info2.part2_3_length = a1;
 | |
|         a1 = gfc->scalefac_band.l[7 + 1];
 | |
|         if (a1 > i) {
 | |
|             a1 = i;
 | |
|         }
 | |
|         if (a1 > 0)
 | |
|             cod_info2.table_select[0] =
 | |
|                 gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length);
 | |
|         if (i > a1)
 | |
|             cod_info2.table_select[1] =
 | |
|                 gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length);
 | |
|         if (gi->part2_3_length > cod_info2.part2_3_length)
 | |
|             memcpy(gi, &cod_info2, sizeof(gr_info));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 };
 | |
| static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 };
 | |
| const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
 | |
| const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
 | |
| 
 | |
| static void
 | |
| scfsi_calc(int ch, III_side_info_t * l3_side)
 | |
| {
 | |
|     unsigned int i;
 | |
|     int     s1, s2, c1, c2;
 | |
|     int     sfb;
 | |
|     gr_info *const gi = &l3_side->tt[1][ch];
 | |
|     gr_info const *const g0 = &l3_side->tt[0][ch];
 | |
| 
 | |
|     for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) {
 | |
|         for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
 | |
|             if (g0->scalefac[sfb] != gi->scalefac[sfb]
 | |
|                 && gi->scalefac[sfb] >= 0)
 | |
|                 break;
 | |
|         }
 | |
|         if (sfb == scfsi_band[i + 1]) {
 | |
|             for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
 | |
|                 gi->scalefac[sfb] = -1;
 | |
|             }
 | |
|             l3_side->scfsi[ch][i] = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s1 = c1 = 0;
 | |
|     for (sfb = 0; sfb < 11; sfb++) {
 | |
|         if (gi->scalefac[sfb] == -1)
 | |
|             continue;
 | |
|         c1++;
 | |
|         if (s1 < gi->scalefac[sfb])
 | |
|             s1 = gi->scalefac[sfb];
 | |
|     }
 | |
| 
 | |
|     s2 = c2 = 0;
 | |
|     for (; sfb < SBPSY_l; sfb++) {
 | |
|         if (gi->scalefac[sfb] == -1)
 | |
|             continue;
 | |
|         c2++;
 | |
|         if (s2 < gi->scalefac[sfb])
 | |
|             s2 = gi->scalefac[sfb];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
 | |
|             int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
 | |
|             if (gi->part2_length > c) {
 | |
|                 gi->part2_length = c;
 | |
|                 gi->scalefac_compress = (int)i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| Find the optimal way to store the scalefactors.
 | |
| Only call this routine after final scalefactors have been
 | |
| chosen and the channel/granule will not be re-encoded.
 | |
|  */
 | |
| void
 | |
| best_scalefac_store(const lame_internal_flags * gfc,
 | |
|                     const int gr, const int ch, III_side_info_t * const l3_side)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     /* use scalefac_scale if we can */
 | |
|     gr_info *const gi = &l3_side->tt[gr][ch];
 | |
|     int     sfb, i, j, l;
 | |
|     int     recalc = 0;
 | |
| 
 | |
|     /* remove scalefacs from bands with ix=0.  This idea comes
 | |
|      * from the AAC ISO docs.  added mt 3/00 */
 | |
|     /* check if l3_enc=0 */
 | |
|     j = 0;
 | |
|     for (sfb = 0; sfb < gi->sfbmax; sfb++) {
 | |
|         int const width = gi->width[sfb];
 | |
|         assert(width >= 0);
 | |
|         for (l = j, j += width; l < j; ++l) {
 | |
|             if (gi->l3_enc[l] != 0)
 | |
|                 break;
 | |
|         }
 | |
|         if (l == j)
 | |
|             gi->scalefac[sfb] = recalc = -2; /* anything goes. */
 | |
|         /*  only best_scalefac_store and calc_scfsi 
 | |
|          *  know--and only they should know--about the magic number -2. 
 | |
|          */
 | |
|     }
 | |
| 
 | |
|     if (!gi->scalefac_scale && !gi->preflag) {
 | |
|         int     s = 0;
 | |
|         for (sfb = 0; sfb < gi->sfbmax; sfb++)
 | |
|             if (gi->scalefac[sfb] > 0)
 | |
|                 s |= gi->scalefac[sfb];
 | |
| 
 | |
|         if (!(s & 1) && s != 0) {
 | |
|             for (sfb = 0; sfb < gi->sfbmax; sfb++)
 | |
|                 if (gi->scalefac[sfb] > 0)
 | |
|                     gi->scalefac[sfb] >>= 1;
 | |
| 
 | |
|             gi->scalefac_scale = recalc = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!gi->preflag && gi->block_type != SHORT_TYPE && cfg->mode_gr == 2) {
 | |
|         for (sfb = 11; sfb < SBPSY_l; sfb++)
 | |
|             if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2)
 | |
|                 break;
 | |
|         if (sfb == SBPSY_l) {
 | |
|             for (sfb = 11; sfb < SBPSY_l; sfb++)
 | |
|                 if (gi->scalefac[sfb] > 0)
 | |
|                     gi->scalefac[sfb] -= pretab[sfb];
 | |
| 
 | |
|             gi->preflag = recalc = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         l3_side->scfsi[ch][i] = 0;
 | |
| 
 | |
|     if (cfg->mode_gr == 2 && gr == 1
 | |
|         && l3_side->tt[0][ch].block_type != SHORT_TYPE
 | |
|         && l3_side->tt[1][ch].block_type != SHORT_TYPE) {
 | |
|         scfsi_calc(ch, l3_side);
 | |
|         recalc = 0;
 | |
|     }
 | |
|     for (sfb = 0; sfb < gi->sfbmax; sfb++) {
 | |
|         if (gi->scalefac[sfb] == -2) {
 | |
|             gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */
 | |
|         }
 | |
|     }
 | |
|     if (recalc) {
 | |
|         (void) scale_bitcount(gfc, gi);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static int
 | |
| all_scalefactors_not_negative(int const *scalefac, int n)
 | |
| {
 | |
|     int     i;
 | |
|     for (i = 0; i < n; ++i) {
 | |
|         if (scalefac[i] < 0)
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* number of bits used to encode scalefacs */
 | |
| 
 | |
| /* 18*slen1_tab[i] + 18*slen2_tab[i] */
 | |
| static const int scale_short[16] = {
 | |
|     0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126
 | |
| };
 | |
| 
 | |
| /* 17*slen1_tab[i] + 18*slen2_tab[i] */
 | |
| static const int scale_mixed[16] = {
 | |
|     0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122
 | |
| };
 | |
| 
 | |
| /* 11*slen1_tab[i] + 10*slen2_tab[i] */
 | |
| static const int scale_long[16] = {
 | |
|     0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74
 | |
| };
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*            scale_bitcount                                             */
 | |
| /*************************************************************************/
 | |
| 
 | |
| /* Also calculates the number of bits necessary to code the scalefactors. */
 | |
| 
 | |
| static int
 | |
| mpeg1_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
 | |
| {
 | |
|     int     k, sfb, max_slen1 = 0, max_slen2 = 0;
 | |
| 
 | |
|     /* maximum values */
 | |
|     const int *tab;
 | |
|     int    *const scalefac = cod_info->scalefac;
 | |
| 
 | |
|     (void) gfc;
 | |
|     assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax));
 | |
| 
 | |
|     if (cod_info->block_type == SHORT_TYPE) {
 | |
|         tab = scale_short;
 | |
|         if (cod_info->mixed_block_flag)
 | |
|             tab = scale_mixed;
 | |
|     }
 | |
|     else {              /* block_type == 1,2,or 3 */
 | |
|         tab = scale_long;
 | |
|         if (!cod_info->preflag) {
 | |
|             for (sfb = 11; sfb < SBPSY_l; sfb++)
 | |
|                 if (scalefac[sfb] < pretab[sfb])
 | |
|                     break;
 | |
| 
 | |
|             if (sfb == SBPSY_l) {
 | |
|                 cod_info->preflag = 1;
 | |
|                 for (sfb = 11; sfb < SBPSY_l; sfb++)
 | |
|                     scalefac[sfb] -= pretab[sfb];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (sfb = 0; sfb < cod_info->sfbdivide; sfb++)
 | |
|         if (max_slen1 < scalefac[sfb])
 | |
|             max_slen1 = scalefac[sfb];
 | |
| 
 | |
|     for (; sfb < cod_info->sfbmax; sfb++)
 | |
|         if (max_slen2 < scalefac[sfb])
 | |
|             max_slen2 = scalefac[sfb];
 | |
| 
 | |
|     /* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99
 | |
|      * loop over *all* posible values of scalefac_compress to find the
 | |
|      * one which uses the smallest number of bits.  ISO would stop
 | |
|      * at first valid index */
 | |
|     cod_info->part2_length = LARGE_BITS;
 | |
|     for (k = 0; k < 16; k++) {
 | |
|         if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
 | |
|             && cod_info->part2_length > tab[k]) {
 | |
|             cod_info->part2_length = tab[k];
 | |
|             cod_info->scalefac_compress = k;
 | |
|         }
 | |
|     }
 | |
|     return cod_info->part2_length == LARGE_BITS;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|   table of largest scalefactor values for MPEG2
 | |
| */
 | |
| static const int max_range_sfac_tab[6][4] = {
 | |
|     {15, 15, 7, 7},
 | |
|     {15, 15, 7, 0},
 | |
|     {7, 3, 0, 0},
 | |
|     {15, 31, 31, 0},
 | |
|     {7, 7, 7, 0},
 | |
|     {3, 3, 0, 0}
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*            scale_bitcount_lsf                                         */
 | |
| /*************************************************************************/
 | |
| 
 | |
| /* Also counts the number of bits to encode the scalefacs but for MPEG 2 */
 | |
| /* Lower sampling frequencies  (24, 22.05 and 16 kHz.)                   */
 | |
| 
 | |
| /*  This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS,     */
 | |
| /* "Audio Decoding Layer III"                                            */
 | |
| 
 | |
| static int
 | |
| mpeg2_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
 | |
| {
 | |
|     int     table_number, row_in_table, partition, nr_sfb, window, over;
 | |
|     int     i, sfb, max_sfac[4];
 | |
|     const int *partition_table;
 | |
|     int const *const scalefac = cod_info->scalefac;
 | |
| 
 | |
|     /*
 | |
|        Set partition table. Note that should try to use table one,
 | |
|        but do not yet...
 | |
|      */
 | |
|     if (cod_info->preflag)
 | |
|         table_number = 2;
 | |
|     else
 | |
|         table_number = 0;
 | |
| 
 | |
|     for (i = 0; i < 4; i++)
 | |
|         max_sfac[i] = 0;
 | |
| 
 | |
|     if (cod_info->block_type == SHORT_TYPE) {
 | |
|         row_in_table = 1;
 | |
|         partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
 | |
|         for (sfb = 0, partition = 0; partition < 4; partition++) {
 | |
|             nr_sfb = partition_table[partition] / 3;
 | |
|             for (i = 0; i < nr_sfb; i++, sfb++)
 | |
|                 for (window = 0; window < 3; window++)
 | |
|                     if (scalefac[sfb * 3 + window] > max_sfac[partition])
 | |
|                         max_sfac[partition] = scalefac[sfb * 3 + window];
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         row_in_table = 0;
 | |
|         partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
 | |
|         for (sfb = 0, partition = 0; partition < 4; partition++) {
 | |
|             nr_sfb = partition_table[partition];
 | |
|             for (i = 0; i < nr_sfb; i++, sfb++)
 | |
|                 if (scalefac[sfb] > max_sfac[partition])
 | |
|                     max_sfac[partition] = scalefac[sfb];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (over = 0, partition = 0; partition < 4; partition++) {
 | |
|         if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
 | |
|             over++;
 | |
|     }
 | |
|     if (!over) {
 | |
|         /*
 | |
|            Since no bands have been over-amplified, we can set scalefac_compress
 | |
|            and slen[] for the formatter
 | |
|          */
 | |
|         static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
 | |
| 
 | |
|         int     slen1, slen2, slen3, slen4;
 | |
| 
 | |
|         cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table];
 | |
|         for (partition = 0; partition < 4; partition++)
 | |
|             cod_info->slen[partition] = log2tab[max_sfac[partition]];
 | |
| 
 | |
|         /* set scalefac_compress */
 | |
|         slen1 = cod_info->slen[0];
 | |
|         slen2 = cod_info->slen[1];
 | |
|         slen3 = cod_info->slen[2];
 | |
|         slen4 = cod_info->slen[3];
 | |
| 
 | |
|         switch (table_number) {
 | |
|         case 0:
 | |
|             cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4)
 | |
|                 + (slen3 << 2)
 | |
|                 + slen4;
 | |
|             break;
 | |
| 
 | |
|         case 1:
 | |
|             cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
 | |
|                 + slen3;
 | |
|             break;
 | |
| 
 | |
|         case 2:
 | |
|             cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             ERRORF(gfc, "intensity stereo not implemented yet\n");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG
 | |
|     if (over)
 | |
|         ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n");
 | |
| #endif
 | |
|     if (!over) {
 | |
|         assert(cod_info->sfb_partition_table);
 | |
|         cod_info->part2_length = 0;
 | |
|         for (partition = 0; partition < 4; partition++)
 | |
|             cod_info->part2_length +=
 | |
|                 cod_info->slen[partition] * cod_info->sfb_partition_table[partition];
 | |
|     }
 | |
|     return over;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| scale_bitcount(const lame_internal_flags * gfc, gr_info * cod_info)
 | |
| {
 | |
|     if (gfc->cfg.mode_gr == 2) {
 | |
|         return mpeg1_scale_bitcount(gfc, cod_info);
 | |
|     }
 | |
|     else {
 | |
|         return mpeg2_scale_bitcount(gfc, cod_info);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef MMX_choose_table
 | |
| extern int choose_table_MMX(const int *ix, const int *const end, int *const s);
 | |
| #endif
 | |
| 
 | |
| void
 | |
| huffman_init(lame_internal_flags * const gfc)
 | |
| {
 | |
|     int     i;
 | |
| 
 | |
|     gfc->choose_table = choose_table_nonMMX;
 | |
| 
 | |
| #ifdef MMX_choose_table
 | |
|     if (gfc->CPU_features.MMX) {
 | |
|         gfc->choose_table = choose_table_MMX;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for (i = 2; i <= 576; i += 2) {
 | |
|         int     scfb_anz = 0, bv_index;
 | |
|         while (gfc->scalefac_band.l[++scfb_anz] < i);
 | |
| 
 | |
|         bv_index = subdv_table[scfb_anz].region0_count;
 | |
|         while (gfc->scalefac_band.l[bv_index + 1] > i)
 | |
|             bv_index--;
 | |
| 
 | |
|         if (bv_index < 0) {
 | |
|             /* this is an indication that everything is going to
 | |
|                be encoded as region0:  bigvalues < region0 < region1
 | |
|                so lets set region0, region1 to some value larger
 | |
|                than bigvalues */
 | |
|             bv_index = subdv_table[scfb_anz].region0_count;
 | |
|         }
 | |
| 
 | |
|         gfc->sv_qnt.bv_scf[i - 2] = bv_index;
 | |
| 
 | |
|         bv_index = subdv_table[scfb_anz].region1_count;
 | |
|         while (gfc->scalefac_band.l[bv_index + gfc->sv_qnt.bv_scf[i - 2] + 2] > i)
 | |
|             bv_index--;
 | |
| 
 | |
|         if (bv_index < 0) {
 | |
|             bv_index = subdv_table[scfb_anz].region1_count;
 | |
|         }
 | |
| 
 | |
|         gfc->sv_qnt.bv_scf[i - 1] = bv_index;
 | |
|     }
 | |
| }
 |