mirror of
				https://github.com/cookiengineer/audacity
				synced 2025-10-31 14:13:50 +01:00 
			
		
		
		
	Using LAME 3.10 Windows project files substantially changed from original, and included into audacity solution.
		
			
				
	
	
		
			1075 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1075 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *      quantize_pvt source file
 | |
|  *
 | |
|  *      Copyright (c) 1999-2002 Takehiro Tominaga
 | |
|  *      Copyright (c) 2000-2012 Robert Hegemann
 | |
|  *      Copyright (c) 2001 Naoki Shibata
 | |
|  *      Copyright (c) 2002-2005 Gabriel Bouvigne
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Library General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Library General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Library General Public
 | |
|  * License along with this library; if not, write to the
 | |
|  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | |
|  * Boston, MA 02111-1307, USA.
 | |
|  */
 | |
| 
 | |
| /* $Id: quantize_pvt.c,v 1.175 2017/09/06 15:07:30 robert Exp $ */
 | |
| #ifdef HAVE_CONFIG_H
 | |
| # include <config.h>
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #include "lame.h"
 | |
| #include "machine.h"
 | |
| #include "encoder.h"
 | |
| #include "util.h"
 | |
| #include "quantize_pvt.h"
 | |
| #include "reservoir.h"
 | |
| #include "lame-analysis.h"
 | |
| #include <float.h>
 | |
| 
 | |
| 
 | |
| #define NSATHSCALE 100  /* Assuming dynamic range=96dB, this value should be 92 */
 | |
| 
 | |
| /*
 | |
|   The following table is used to implement the scalefactor
 | |
|   partitioning for MPEG2 as described in section
 | |
|   2.4.3.2 of the IS. The indexing corresponds to the
 | |
|   way the tables are presented in the IS:
 | |
| 
 | |
|   [table_number][row_in_table][column of nr_of_sfb]
 | |
| */
 | |
| const int nr_of_sfb_block[6][3][4] = {
 | |
|     {
 | |
|      {6, 5, 5, 5},
 | |
|      {9, 9, 9, 9},
 | |
|      {6, 9, 9, 9}
 | |
|      },
 | |
|     {
 | |
|      {6, 5, 7, 3},
 | |
|      {9, 9, 12, 6},
 | |
|      {6, 9, 12, 6}
 | |
|      },
 | |
|     {
 | |
|      {11, 10, 0, 0},
 | |
|      {18, 18, 0, 0},
 | |
|      {15, 18, 0, 0}
 | |
|      },
 | |
|     {
 | |
|      {7, 7, 7, 0},
 | |
|      {12, 12, 12, 0},
 | |
|      {6, 15, 12, 0}
 | |
|      },
 | |
|     {
 | |
|      {6, 6, 6, 3},
 | |
|      {12, 9, 9, 6},
 | |
|      {6, 12, 9, 6}
 | |
|      },
 | |
|     {
 | |
|      {8, 8, 5, 0},
 | |
|      {15, 12, 9, 0},
 | |
|      {6, 18, 9, 0}
 | |
|      }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Table B.6: layer3 preemphasis */
 | |
| const int pretab[SBMAX_l] = {
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0
 | |
| };
 | |
| 
 | |
| /*
 | |
|   Here are MPEG1 Table B.8 and MPEG2 Table B.1
 | |
|   -- Layer III scalefactor bands. 
 | |
|   Index into this using a method such as:
 | |
|     idx  = fr_ps->header->sampling_frequency
 | |
|            + (fr_ps->header->version * 3)
 | |
| */
 | |
| 
 | |
| 
 | |
| const scalefac_struct sfBandIndex[9] = {
 | |
|     {                   /* Table B.2.b: 22.05 kHz */
 | |
|      {0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
 | |
|       522, 576},
 | |
|      {0, 4, 8, 12, 18, 24, 32, 42, 56, 74, 100, 132, 174, 192}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* Table B.2.c: 24 kHz */ /* docs: 332. mpg123(broken): 330 */
 | |
|      {0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 114, 136, 162, 194, 232, 278, 332, 394, 464,
 | |
|       540, 576},
 | |
|      {0, 4, 8, 12, 18, 26, 36, 48, 62, 80, 104, 136, 180, 192}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* Table B.2.a: 16 kHz */
 | |
|      {0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
 | |
|       522, 576},
 | |
|      {0, 4, 8, 12, 18, 26, 36, 48, 62, 80, 104, 134, 174, 192}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* Table B.8.b: 44.1 kHz */
 | |
|      {0, 4, 8, 12, 16, 20, 24, 30, 36, 44, 52, 62, 74, 90, 110, 134, 162, 196, 238, 288, 342, 418,
 | |
|       576},
 | |
|      {0, 4, 8, 12, 16, 22, 30, 40, 52, 66, 84, 106, 136, 192}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* Table B.8.c: 48 kHz */
 | |
|      {0, 4, 8, 12, 16, 20, 24, 30, 36, 42, 50, 60, 72, 88, 106, 128, 156, 190, 230, 276, 330, 384,
 | |
|       576},
 | |
|      {0, 4, 8, 12, 16, 22, 28, 38, 50, 64, 80, 100, 126, 192}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* Table B.8.a: 32 kHz */
 | |
|      {0, 4, 8, 12, 16, 20, 24, 30, 36, 44, 54, 66, 82, 102, 126, 156, 194, 240, 296, 364, 448, 550,
 | |
|       576},
 | |
|      {0, 4, 8, 12, 16, 22, 30, 42, 58, 78, 104, 138, 180, 192}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* MPEG-2.5 11.025 kHz */
 | |
|      {0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
 | |
|       522, 576},
 | |
|      {0 / 3, 12 / 3, 24 / 3, 36 / 3, 54 / 3, 78 / 3, 108 / 3, 144 / 3, 186 / 3, 240 / 3, 312 / 3,
 | |
|       402 / 3, 522 / 3, 576 / 3}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* MPEG-2.5 12 kHz */
 | |
|      {0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
 | |
|       522, 576},
 | |
|      {0 / 3, 12 / 3, 24 / 3, 36 / 3, 54 / 3, 78 / 3, 108 / 3, 144 / 3, 186 / 3, 240 / 3, 312 / 3,
 | |
|       402 / 3, 522 / 3, 576 / 3}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      },
 | |
|     {                   /* MPEG-2.5 8 kHz */
 | |
|      {0, 12, 24, 36, 48, 60, 72, 88, 108, 132, 160, 192, 232, 280, 336, 400, 476, 566, 568, 570,
 | |
|       572, 574, 576},
 | |
|      {0 / 3, 24 / 3, 48 / 3, 72 / 3, 108 / 3, 156 / 3, 216 / 3, 288 / 3, 372 / 3, 480 / 3, 486 / 3,
 | |
|       492 / 3, 498 / 3, 576 / 3}
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb21 pseudo sub bands */
 | |
|      , {0, 0, 0, 0, 0, 0, 0} /*  sfb12 pseudo sub bands */
 | |
|      }
 | |
| };
 | |
| 
 | |
| 
 | |
| /* FIXME: move global variables in some struct */
 | |
| 
 | |
| FLOAT   pow20[Q_MAX + Q_MAX2 + 1];
 | |
| FLOAT   ipow20[Q_MAX];
 | |
| FLOAT   pow43[PRECALC_SIZE];
 | |
| /* initialized in first call to iteration_init */
 | |
| #ifdef TAKEHIRO_IEEE754_HACK
 | |
| FLOAT   adj43asm[PRECALC_SIZE];
 | |
| #else
 | |
| FLOAT   adj43[PRECALC_SIZE];
 | |
| #endif
 | |
| 
 | |
| /* 
 | |
| compute the ATH for each scalefactor band 
 | |
| cd range:  0..96db
 | |
| 
 | |
| Input:  3.3kHz signal  32767 amplitude  (3.3kHz is where ATH is smallest = -5db)
 | |
| longblocks:  sfb=12   en0/bw=-11db    max_en0 = 1.3db
 | |
| shortblocks: sfb=5           -9db              0db
 | |
| 
 | |
| Input:  1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated)
 | |
| longblocks:  amp=1      sfb=12   en0/bw=-103 db      max_en0 = -92db
 | |
|             amp=32767   sfb=12           -12 db                 -1.4db 
 | |
| 
 | |
| Input:  1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated)
 | |
| shortblocks: amp=1      sfb=5   en0/bw= -99                    -86 
 | |
|             amp=32767   sfb=5           -9  db                  4db 
 | |
| 
 | |
| 
 | |
| MAX energy of largest wave at 3.3kHz = 1db
 | |
| AVE energy of largest wave at 3.3kHz = -11db
 | |
| Let's take AVE:  -11db = maximum signal in sfb=12.  
 | |
| Dynamic range of CD: 96db.  Therefor energy of smallest audible wave 
 | |
| in sfb=12  = -11  - 96 = -107db = ATH at 3.3kHz.  
 | |
| 
 | |
| ATH formula for this wave: -5db.  To adjust to LAME scaling, we need
 | |
| ATH = ATH_formula  - 103  (db)
 | |
| ATH = ATH * 2.5e-10      (ener)
 | |
| 
 | |
| */
 | |
| 
 | |
| static  FLOAT
 | |
| ATHmdct(SessionConfig_t const *cfg, FLOAT f)
 | |
| {
 | |
|     FLOAT   ath;
 | |
| 
 | |
|     ath = ATHformula(cfg, f);
 | |
| 
 | |
|     if (cfg->ATHfixpoint > 0) {
 | |
|         ath -= cfg->ATHfixpoint;
 | |
|     }
 | |
|     else {
 | |
|         ath -= NSATHSCALE;
 | |
|     }
 | |
|     ath += cfg->ATH_offset_db;
 | |
| 
 | |
|     /* modify the MDCT scaling for the ATH and convert to energy */
 | |
|     ath = powf(10.0f, ath * 0.1f);
 | |
|     return ath;
 | |
| }
 | |
| 
 | |
| static void
 | |
| compute_ath(lame_internal_flags const* gfc)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     FLOAT  *const ATH_l = gfc->ATH->l;
 | |
|     FLOAT  *const ATH_psfb21 = gfc->ATH->psfb21;
 | |
|     FLOAT  *const ATH_s = gfc->ATH->s;
 | |
|     FLOAT  *const ATH_psfb12 = gfc->ATH->psfb12;
 | |
|     int     sfb, i, start, end;
 | |
|     FLOAT   ATH_f;
 | |
|     FLOAT const samp_freq = cfg->samplerate_out;
 | |
| 
 | |
|     for (sfb = 0; sfb < SBMAX_l; sfb++) {
 | |
|         start = gfc->scalefac_band.l[sfb];
 | |
|         end = gfc->scalefac_band.l[sfb + 1];
 | |
|         ATH_l[sfb] = FLOAT_MAX;
 | |
|         for (i = start; i < end; i++) {
 | |
|             FLOAT const freq = i * samp_freq / (2 * 576);
 | |
|             ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
 | |
|             ATH_l[sfb] = Min(ATH_l[sfb], ATH_f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (sfb = 0; sfb < PSFB21; sfb++) {
 | |
|         start = gfc->scalefac_band.psfb21[sfb];
 | |
|         end = gfc->scalefac_band.psfb21[sfb + 1];
 | |
|         ATH_psfb21[sfb] = FLOAT_MAX;
 | |
|         for (i = start; i < end; i++) {
 | |
|             FLOAT const freq = i * samp_freq / (2 * 576);
 | |
|             ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
 | |
|             ATH_psfb21[sfb] = Min(ATH_psfb21[sfb], ATH_f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (sfb = 0; sfb < SBMAX_s; sfb++) {
 | |
|         start = gfc->scalefac_band.s[sfb];
 | |
|         end = gfc->scalefac_band.s[sfb + 1];
 | |
|         ATH_s[sfb] = FLOAT_MAX;
 | |
|         for (i = start; i < end; i++) {
 | |
|             FLOAT const freq = i * samp_freq / (2 * 192);
 | |
|             ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
 | |
|             ATH_s[sfb] = Min(ATH_s[sfb], ATH_f);
 | |
|         }
 | |
|         ATH_s[sfb] *= (gfc->scalefac_band.s[sfb + 1] - gfc->scalefac_band.s[sfb]);
 | |
|     }
 | |
| 
 | |
|     for (sfb = 0; sfb < PSFB12; sfb++) {
 | |
|         start = gfc->scalefac_band.psfb12[sfb];
 | |
|         end = gfc->scalefac_band.psfb12[sfb + 1];
 | |
|         ATH_psfb12[sfb] = FLOAT_MAX;
 | |
|         for (i = start; i < end; i++) {
 | |
|             FLOAT const freq = i * samp_freq / (2 * 192);
 | |
|             ATH_f = ATHmdct(cfg, freq); /* freq in kHz */
 | |
|             ATH_psfb12[sfb] = Min(ATH_psfb12[sfb], ATH_f);
 | |
|         }
 | |
|         /*not sure about the following */
 | |
|         ATH_psfb12[sfb] *= (gfc->scalefac_band.s[13] - gfc->scalefac_band.s[12]);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*  no-ATH mode:
 | |
|      *  reduce ATH to -200 dB
 | |
|      */
 | |
| 
 | |
|     if (cfg->noATH) {
 | |
|         for (sfb = 0; sfb < SBMAX_l; sfb++) {
 | |
|             ATH_l[sfb] = 1E-20;
 | |
|         }
 | |
|         for (sfb = 0; sfb < PSFB21; sfb++) {
 | |
|             ATH_psfb21[sfb] = 1E-20;
 | |
|         }
 | |
|         for (sfb = 0; sfb < SBMAX_s; sfb++) {
 | |
|             ATH_s[sfb] = 1E-20;
 | |
|         }
 | |
|         for (sfb = 0; sfb < PSFB12; sfb++) {
 | |
|             ATH_psfb12[sfb] = 1E-20;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*  work in progress, don't rely on it too much
 | |
|      */
 | |
|     gfc->ATH->floor = 10. * log10(ATHmdct(cfg, -1.));
 | |
| 
 | |
|     /*
 | |
|        {   FLOAT g=10000, t=1e30, x;
 | |
|        for ( f = 100; f < 10000; f++ ) {
 | |
|        x = ATHmdct( cfg, f );
 | |
|        if ( t > x ) t = x, g = f;
 | |
|        }
 | |
|        printf("min=%g\n", g);
 | |
|        } */
 | |
| }
 | |
| 
 | |
| 
 | |
| static float const payload_long[2][4] = 
 | |
| { {-0.000f, -0.000f, -0.000f, +0.000f}
 | |
| , {-0.500f, -0.250f, -0.025f, +0.500f}
 | |
| };
 | |
| static float const payload_short[2][4] = 
 | |
| { {-0.000f, -0.000f, -0.000f, +0.000f}
 | |
| , {-2.000f, -1.000f, -0.050f, +0.500f}
 | |
| };
 | |
| 
 | |
| /************************************************************************/
 | |
| /*  initialization for iteration_loop */
 | |
| /************************************************************************/
 | |
| void
 | |
| iteration_init(lame_internal_flags * gfc)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     III_side_info_t *const l3_side = &gfc->l3_side;
 | |
|     FLOAT   adjust, db;
 | |
|     int     i, sel;
 | |
| 
 | |
|     if (gfc->iteration_init_init == 0) {
 | |
|         gfc->iteration_init_init = 1;
 | |
| 
 | |
|         l3_side->main_data_begin = 0;
 | |
|         compute_ath(gfc);
 | |
| 
 | |
|         pow43[0] = 0.0;
 | |
|         for (i = 1; i < PRECALC_SIZE; i++)
 | |
|             pow43[i] = pow((FLOAT) i, 4.0 / 3.0);
 | |
| 
 | |
| #ifdef TAKEHIRO_IEEE754_HACK
 | |
|         adj43asm[0] = 0.0;
 | |
|         for (i = 1; i < PRECALC_SIZE; i++)
 | |
|             adj43asm[i] = i - 0.5 - pow(0.5 * (pow43[i - 1] + pow43[i]), 0.75);
 | |
| #else
 | |
|         for (i = 0; i < PRECALC_SIZE - 1; i++)
 | |
|             adj43[i] = (i + 1) - pow(0.5 * (pow43[i] + pow43[i + 1]), 0.75);
 | |
|         adj43[i] = 0.5;
 | |
| #endif
 | |
|         for (i = 0; i < Q_MAX; i++)
 | |
|             ipow20[i] = pow(2.0, (double) (i - 210) * -0.1875);
 | |
|         for (i = 0; i <= Q_MAX + Q_MAX2; i++)
 | |
|             pow20[i] = pow(2.0, (double) (i - 210 - Q_MAX2) * 0.25);
 | |
| 
 | |
|         huffman_init(gfc);
 | |
|         init_xrpow_core_init(gfc);
 | |
| 
 | |
|         sel = 1;/* RH: all modes like vbr-new (cfg->vbr == vbr_mt || cfg->vbr == vbr_mtrh) ? 1 : 0;*/
 | |
| 
 | |
|         /* long */
 | |
|         db = cfg->adjust_bass_db + payload_long[sel][0];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (i = 0; i <= 6; ++i) {
 | |
|             gfc->sv_qnt.longfact[i] = adjust;
 | |
|         }
 | |
|         db = cfg->adjust_alto_db + payload_long[sel][1];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (; i <= 13; ++i) {
 | |
|             gfc->sv_qnt.longfact[i] = adjust;
 | |
|         }
 | |
|         db = cfg->adjust_treble_db + payload_long[sel][2];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (; i <= 20; ++i) {
 | |
|             gfc->sv_qnt.longfact[i] = adjust;
 | |
|         }
 | |
|         db = cfg->adjust_sfb21_db + payload_long[sel][3];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (; i < SBMAX_l; ++i) {
 | |
|             gfc->sv_qnt.longfact[i] = adjust;
 | |
|         }
 | |
| 
 | |
|         /* short */
 | |
|         db = cfg->adjust_bass_db + payload_short[sel][0];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (i = 0; i <= 2; ++i) {
 | |
|             gfc->sv_qnt.shortfact[i] = adjust;
 | |
|         }
 | |
|         db = cfg->adjust_alto_db + payload_short[sel][1];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (; i <= 6; ++i) {
 | |
|             gfc->sv_qnt.shortfact[i] = adjust;
 | |
|         }
 | |
|         db = cfg->adjust_treble_db + payload_short[sel][2];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (; i <= 11; ++i) {
 | |
|             gfc->sv_qnt.shortfact[i] = adjust;
 | |
|         }
 | |
|         db = cfg->adjust_sfb21_db + payload_short[sel][3];
 | |
|         adjust = powf(10.f, db * 0.1f);
 | |
|         for (; i < SBMAX_s; ++i) {
 | |
|             gfc->sv_qnt.shortfact[i] = adjust;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /************************************************************************
 | |
|  * allocate bits among 2 channels based on PE
 | |
|  * mt 6/99
 | |
|  * bugfixes rh 8/01: often allocated more than the allowed 4095 bits
 | |
|  ************************************************************************/
 | |
| int
 | |
| on_pe(lame_internal_flags * gfc, const FLOAT pe[][2], int targ_bits[2], int mean_bits, int gr, int cbr)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     int     extra_bits = 0, tbits, bits;
 | |
|     int     add_bits[2] = {0, 0};
 | |
|     int     max_bits;        /* maximum allowed bits for this granule */
 | |
|     int     ch;
 | |
| 
 | |
|     /* allocate targ_bits for granule */
 | |
|     ResvMaxBits(gfc, mean_bits, &tbits, &extra_bits, cbr);
 | |
|     max_bits = tbits + extra_bits;
 | |
|     if (max_bits > MAX_BITS_PER_GRANULE) /* hard limit per granule */
 | |
|         max_bits = MAX_BITS_PER_GRANULE;
 | |
| 
 | |
|     for (bits = 0, ch = 0; ch < cfg->channels_out; ++ch) {
 | |
|         /******************************************************************
 | |
|          * allocate bits for each channel 
 | |
|          ******************************************************************/
 | |
|         targ_bits[ch] = Min(MAX_BITS_PER_CHANNEL, tbits / cfg->channels_out);
 | |
| 
 | |
|         add_bits[ch] = targ_bits[ch] * pe[gr][ch] / 700.0 - targ_bits[ch];
 | |
| 
 | |
|         /* at most increase bits by 1.5*average */
 | |
|         if (add_bits[ch] > mean_bits * 3 / 4)
 | |
|             add_bits[ch] = mean_bits * 3 / 4;
 | |
|         if (add_bits[ch] < 0)
 | |
|             add_bits[ch] = 0;
 | |
| 
 | |
|         if (add_bits[ch] + targ_bits[ch] > MAX_BITS_PER_CHANNEL)
 | |
|             add_bits[ch] = Max(0, MAX_BITS_PER_CHANNEL - targ_bits[ch]);
 | |
| 
 | |
|         bits += add_bits[ch];
 | |
|     }
 | |
|     if (bits > extra_bits && bits > 0) {
 | |
|         for (ch = 0; ch < cfg->channels_out; ++ch) {
 | |
|             add_bits[ch] = extra_bits * add_bits[ch] / bits;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < cfg->channels_out; ++ch) {
 | |
|         targ_bits[ch] += add_bits[ch];
 | |
|         extra_bits -= add_bits[ch];
 | |
|     }
 | |
| 
 | |
|     for (bits = 0, ch = 0; ch < cfg->channels_out; ++ch) {
 | |
|         bits += targ_bits[ch];
 | |
|     }
 | |
|     if (bits > MAX_BITS_PER_GRANULE) {
 | |
|         int     sum = 0;
 | |
|         for (ch = 0; ch < cfg->channels_out; ++ch) {
 | |
|             targ_bits[ch] *= MAX_BITS_PER_GRANULE;
 | |
|             targ_bits[ch] /= bits;
 | |
|             sum += targ_bits[ch];
 | |
|         }
 | |
|         assert(sum <= MAX_BITS_PER_GRANULE);
 | |
|     }
 | |
| 
 | |
|     return max_bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void
 | |
| reduce_side(int targ_bits[2], FLOAT ms_ener_ratio, int mean_bits, int max_bits)
 | |
| {
 | |
|     int     move_bits;
 | |
|     FLOAT   fac;
 | |
| 
 | |
|     assert(max_bits <= MAX_BITS_PER_GRANULE);
 | |
|     assert(targ_bits[0] + targ_bits[1] <= MAX_BITS_PER_GRANULE);
 | |
| 
 | |
|     /*  ms_ener_ratio = 0:  allocate 66/33  mid/side  fac=.33  
 | |
|      *  ms_ener_ratio =.5:  allocate 50/50 mid/side   fac= 0 */
 | |
|     /* 75/25 split is fac=.5 */
 | |
|     /* float fac = .50*(.5-ms_ener_ratio[gr])/.5; */
 | |
|     fac = .33 * (.5 - ms_ener_ratio) / .5;
 | |
|     if (fac < 0)
 | |
|         fac = 0;
 | |
|     if (fac > .5)
 | |
|         fac = .5;
 | |
| 
 | |
|     /* number of bits to move from side channel to mid channel */
 | |
|     /*    move_bits = fac*targ_bits[1];  */
 | |
|     move_bits = fac * .5 * (targ_bits[0] + targ_bits[1]);
 | |
| 
 | |
|     if (move_bits > MAX_BITS_PER_CHANNEL - targ_bits[0]) {
 | |
|         move_bits = MAX_BITS_PER_CHANNEL - targ_bits[0];
 | |
|     }
 | |
|     if (move_bits < 0)
 | |
|         move_bits = 0;
 | |
| 
 | |
|     if (targ_bits[1] >= 125) {
 | |
|         /* dont reduce side channel below 125 bits */
 | |
|         if (targ_bits[1] - move_bits > 125) {
 | |
| 
 | |
|             /* if mid channel already has 2x more than average, dont bother */
 | |
|             /* mean_bits = bits per granule (for both channels) */
 | |
|             if (targ_bits[0] < mean_bits)
 | |
|                 targ_bits[0] += move_bits;
 | |
|             targ_bits[1] -= move_bits;
 | |
|         }
 | |
|         else {
 | |
|             targ_bits[0] += targ_bits[1] - 125;
 | |
|             targ_bits[1] = 125;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     move_bits = targ_bits[0] + targ_bits[1];
 | |
|     if (move_bits > max_bits) {
 | |
|         targ_bits[0] = (max_bits * targ_bits[0]) / move_bits;
 | |
|         targ_bits[1] = (max_bits * targ_bits[1]) / move_bits;
 | |
|     }
 | |
|     assert(targ_bits[0] <= MAX_BITS_PER_CHANNEL);
 | |
|     assert(targ_bits[1] <= MAX_BITS_PER_CHANNEL);
 | |
|     assert(targ_bits[0] + targ_bits[1] <= MAX_BITS_PER_GRANULE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  Robert Hegemann 2001-04-27:
 | |
|  *  this adjusts the ATH, keeping the original noise floor
 | |
|  *  affects the higher frequencies more than the lower ones
 | |
|  */
 | |
| 
 | |
| FLOAT
 | |
| athAdjust(FLOAT a, FLOAT x, FLOAT athFloor, float ATHfixpoint)
 | |
| {
 | |
|     /*  work in progress
 | |
|      */
 | |
|     FLOAT const o = 90.30873362f;
 | |
|     FLOAT const p = (ATHfixpoint < 1.f) ? 94.82444863f : ATHfixpoint;
 | |
|     FLOAT   u = FAST_LOG10_X(x, 10.0f);
 | |
|     FLOAT const v = a * a;
 | |
|     FLOAT   w = 0.0f;
 | |
|     u -= athFloor;      /* undo scaling */
 | |
|     if (v > 1E-20f)
 | |
|         w = 1.f + FAST_LOG10_X(v, 10.0f / o);
 | |
|     if (w < 0)
 | |
|         w = 0.f;
 | |
|     u *= w;
 | |
|     u += athFloor + o - p; /* redo scaling */
 | |
| 
 | |
|     return powf(10.f, 0.1f * u);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*            calc_xmin                                                  */
 | |
| /*************************************************************************/
 | |
| 
 | |
| /*
 | |
|   Calculate the allowed distortion for each scalefactor band,
 | |
|   as determined by the psychoacoustic model.
 | |
|   xmin(sb) = ratio(sb) * en(sb) / bw(sb)
 | |
| 
 | |
|   returns number of sfb's with energy > ATH
 | |
| */
 | |
| 
 | |
| int
 | |
| calc_xmin(lame_internal_flags const *gfc,
 | |
|           III_psy_ratio const *const ratio, gr_info * const cod_info, FLOAT * pxmin)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     int     sfb, gsfb, j = 0, ath_over = 0, k;
 | |
|     ATH_t const *const ATH = gfc->ATH;
 | |
|     const FLOAT *const xr = cod_info->xr;
 | |
|     int     max_nonzero;
 | |
| 
 | |
|     for (gsfb = 0; gsfb < cod_info->psy_lmax; gsfb++) {
 | |
|         FLOAT   en0, xmin;
 | |
|         FLOAT   rh1, rh2, rh3;
 | |
|         int     width, l;
 | |
| 
 | |
|         xmin = athAdjust(ATH->adjust_factor, ATH->l[gsfb], ATH->floor, cfg->ATHfixpoint);
 | |
|         xmin *= gfc->sv_qnt.longfact[gsfb];
 | |
| 
 | |
|         width = cod_info->width[gsfb];
 | |
|         rh1 = xmin / width;
 | |
| #ifdef DBL_EPSILON
 | |
|         rh2 = DBL_EPSILON;
 | |
| #else
 | |
|         rh2 = 2.2204460492503131e-016;
 | |
| #endif
 | |
|         en0 = 0.0;
 | |
|         for (l = 0; l < width; ++l) {
 | |
|             FLOAT const xa = xr[j++];
 | |
|             FLOAT const x2 = xa * xa;
 | |
|             en0 += x2;
 | |
|             rh2 += (x2 < rh1) ? x2 : rh1;
 | |
|         }
 | |
|         if (en0 > xmin)
 | |
|             ath_over++;
 | |
| 
 | |
|         if (en0 < xmin) {
 | |
|             rh3 = en0;
 | |
|         }
 | |
|         else if (rh2 < xmin) {
 | |
|             rh3 = xmin;
 | |
|         }
 | |
|         else {
 | |
|             rh3 = rh2;
 | |
|         }
 | |
|         xmin = rh3;
 | |
|         {
 | |
|             FLOAT const e = ratio->en.l[gsfb];
 | |
|             if (e > 1e-12f) {
 | |
|                 FLOAT   x;
 | |
|                 x = en0 * ratio->thm.l[gsfb] / e;
 | |
|                 x *= gfc->sv_qnt.longfact[gsfb];
 | |
|                 if (xmin < x)
 | |
|                     xmin = x;
 | |
|             }
 | |
|         }
 | |
|         xmin = Max(xmin, DBL_EPSILON);
 | |
|         cod_info->energy_above_cutoff[gsfb] = (en0 > xmin+1e-14f) ? 1 : 0;
 | |
|         *pxmin++ = xmin;
 | |
|     }                   /* end of long block loop */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     /*use this function to determine the highest non-zero coeff */
 | |
|     max_nonzero = 0;
 | |
|     for (k = 575; k > 0; --k) {
 | |
|         if (fabs(xr[k]) > 1e-12f) {
 | |
|             max_nonzero = k;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (cod_info->block_type != SHORT_TYPE) { /* NORM, START or STOP type, but not SHORT */
 | |
|         max_nonzero |= 1; /* only odd numbers */
 | |
|     }
 | |
|     else {
 | |
|         max_nonzero /= 6; /* 3 short blocks */
 | |
|         max_nonzero *= 6;
 | |
|         max_nonzero += 5;
 | |
|     }
 | |
| 
 | |
|     if (gfc->sv_qnt.sfb21_extra == 0 && cfg->samplerate_out < 44000) {
 | |
|       int const sfb_l = (cfg->samplerate_out <= 8000) ? 17 : 21;
 | |
|       int const sfb_s = (cfg->samplerate_out <= 8000) ?  9 : 12;
 | |
|       int   limit = 575;
 | |
|       if (cod_info->block_type != SHORT_TYPE) { /* NORM, START or STOP type, but not SHORT */
 | |
|           limit = gfc->scalefac_band.l[sfb_l]-1;
 | |
|       }
 | |
|       else {
 | |
|           limit = 3*gfc->scalefac_band.s[sfb_s]-1;
 | |
|       }
 | |
|       if (max_nonzero > limit) {
 | |
|           max_nonzero = limit;
 | |
|       }
 | |
|     }
 | |
|     cod_info->max_nonzero_coeff = max_nonzero;
 | |
| 
 | |
| 
 | |
| 
 | |
|     for (sfb = cod_info->sfb_smin; gsfb < cod_info->psymax; sfb++, gsfb += 3) {
 | |
|         int     width, b, l;
 | |
|         FLOAT   tmpATH;
 | |
| 
 | |
|         tmpATH = athAdjust(ATH->adjust_factor, ATH->s[sfb], ATH->floor, cfg->ATHfixpoint);
 | |
|         tmpATH *= gfc->sv_qnt.shortfact[sfb];
 | |
|         
 | |
|         width = cod_info->width[gsfb];
 | |
|         for (b = 0; b < 3; b++) {
 | |
|             FLOAT   en0 = 0.0, xmin = tmpATH;
 | |
|             FLOAT   rh1, rh2, rh3;
 | |
| 
 | |
|             rh1 = tmpATH / width;
 | |
| #ifdef DBL_EPSILON
 | |
|             rh2 = DBL_EPSILON;
 | |
| #else
 | |
|             rh2 = 2.2204460492503131e-016;
 | |
| #endif
 | |
|             for (l = 0; l < width; ++l) {
 | |
|                 FLOAT const xa = xr[j++];
 | |
|                 FLOAT const x2 = xa * xa;
 | |
|                 en0 += x2;
 | |
|                 rh2 += (x2 < rh1) ? x2 : rh1;
 | |
|             }
 | |
|             if (en0 > tmpATH)
 | |
|                 ath_over++;
 | |
|             
 | |
|             if (en0 < tmpATH) {
 | |
|                 rh3 = en0;
 | |
|             }
 | |
|             else if (rh2 < tmpATH) {
 | |
|                 rh3 = tmpATH;
 | |
|             }
 | |
|             else {
 | |
|                 rh3 = rh2;
 | |
|             }
 | |
|             xmin = rh3;
 | |
|             {
 | |
|                 FLOAT const e = ratio->en.s[sfb][b];
 | |
|                 if (e > 1e-12f) {
 | |
|                     FLOAT   x;
 | |
|                     x = en0 * ratio->thm.s[sfb][b] / e;
 | |
|                     x *= gfc->sv_qnt.shortfact[sfb];
 | |
|                     if (xmin < x)
 | |
|                         xmin = x;
 | |
|                 }
 | |
|             }
 | |
|             xmin = Max(xmin, DBL_EPSILON);
 | |
|             cod_info->energy_above_cutoff[gsfb+b] = (en0 > xmin+1e-14f) ? 1 : 0;
 | |
|             *pxmin++ = xmin;
 | |
|         }               /* b */
 | |
|         if (cfg->use_temporal_masking_effect) {
 | |
|             if (pxmin[-3] > pxmin[-3 + 1])
 | |
|                 pxmin[-3 + 1] += (pxmin[-3] - pxmin[-3 + 1]) * gfc->cd_psy->decay;
 | |
|             if (pxmin[-3 + 1] > pxmin[-3 + 2])
 | |
|                 pxmin[-3 + 2] += (pxmin[-3 + 1] - pxmin[-3 + 2]) * gfc->cd_psy->decay;
 | |
|         }
 | |
|     }                   /* end of short block sfb loop */
 | |
| 
 | |
|     return ath_over;
 | |
| }
 | |
| 
 | |
| 
 | |
| static  FLOAT
 | |
| calc_noise_core_c(const gr_info * const cod_info, int *startline, int l, FLOAT step)
 | |
| {
 | |
|     FLOAT   noise = 0;
 | |
|     int     j = *startline;
 | |
|     const int *const ix = cod_info->l3_enc;
 | |
| 
 | |
|     if (j > cod_info->count1) {
 | |
|         while (l--) {
 | |
|             FLOAT   temp;
 | |
|             temp = cod_info->xr[j];
 | |
|             j++;
 | |
|             noise += temp * temp;
 | |
|             temp = cod_info->xr[j];
 | |
|             j++;
 | |
|             noise += temp * temp;
 | |
|         }
 | |
|     }
 | |
|     else if (j > cod_info->big_values) {
 | |
|         FLOAT   ix01[2];
 | |
|         ix01[0] = 0;
 | |
|         ix01[1] = step;
 | |
|         while (l--) {
 | |
|             FLOAT   temp;
 | |
|             temp = fabs(cod_info->xr[j]) - ix01[ix[j]];
 | |
|             j++;
 | |
|             noise += temp * temp;
 | |
|             temp = fabs(cod_info->xr[j]) - ix01[ix[j]];
 | |
|             j++;
 | |
|             noise += temp * temp;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         while (l--) {
 | |
|             FLOAT   temp;
 | |
|             temp = fabs(cod_info->xr[j]) - pow43[ix[j]] * step;
 | |
|             j++;
 | |
|             noise += temp * temp;
 | |
|             temp = fabs(cod_info->xr[j]) - pow43[ix[j]] * step;
 | |
|             j++;
 | |
|             noise += temp * temp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *startline = j;
 | |
|     return noise;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*            calc_noise                                                 */
 | |
| /*************************************************************************/
 | |
| 
 | |
| /* -oo dB  =>  -1.00 */
 | |
| /* - 6 dB  =>  -0.97 */
 | |
| /* - 3 dB  =>  -0.80 */
 | |
| /* - 2 dB  =>  -0.64 */
 | |
| /* - 1 dB  =>  -0.38 */
 | |
| /*   0 dB  =>   0.00 */
 | |
| /* + 1 dB  =>  +0.49 */
 | |
| /* + 2 dB  =>  +1.06 */
 | |
| /* + 3 dB  =>  +1.68 */
 | |
| /* + 6 dB  =>  +3.69 */
 | |
| /* +10 dB  =>  +6.45 */
 | |
| 
 | |
| int
 | |
| calc_noise(gr_info const *const cod_info,
 | |
|            FLOAT const *l3_xmin,
 | |
|            FLOAT * distort, calc_noise_result * const res, calc_noise_data * prev_noise)
 | |
| {
 | |
|     int     sfb, l, over = 0;
 | |
|     FLOAT   over_noise_db = 0;
 | |
|     FLOAT   tot_noise_db = 0; /*    0 dB relative to masking */
 | |
|     FLOAT   max_noise = -20.0; /* -200 dB relative to masking */
 | |
|     int     j = 0;
 | |
|     const int *scalefac = cod_info->scalefac;
 | |
| 
 | |
|     res->over_SSD = 0;
 | |
| 
 | |
| 
 | |
|     for (sfb = 0; sfb < cod_info->psymax; sfb++) {
 | |
|         int const s =
 | |
|             cod_info->global_gain - (((*scalefac++) + (cod_info->preflag ? pretab[sfb] : 0))
 | |
|                                      << (cod_info->scalefac_scale + 1))
 | |
|             - cod_info->subblock_gain[cod_info->window[sfb]] * 8;
 | |
|         FLOAT const r_l3_xmin = 1.f / *l3_xmin++;
 | |
|         FLOAT   distort_ = 0.0f;
 | |
|         FLOAT   noise = 0.0f;
 | |
| 
 | |
|         if (prev_noise && (prev_noise->step[sfb] == s)) {
 | |
| 
 | |
|             /* use previously computed values */
 | |
|             j += cod_info->width[sfb];
 | |
|             distort_ = r_l3_xmin * prev_noise->noise[sfb];
 | |
| 
 | |
|             noise = prev_noise->noise_log[sfb];
 | |
| 
 | |
|         }
 | |
|         else {
 | |
|             FLOAT const step = POW20(s);
 | |
|             l = cod_info->width[sfb] >> 1;
 | |
| 
 | |
|             if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) {
 | |
|                 int     usefullsize;
 | |
|                 usefullsize = cod_info->max_nonzero_coeff - j + 1;
 | |
| 
 | |
|                 if (usefullsize > 0)
 | |
|                     l = usefullsize >> 1;
 | |
|                 else
 | |
|                     l = 0;
 | |
|             }
 | |
| 
 | |
|             noise = calc_noise_core_c(cod_info, &j, l, step);
 | |
| 
 | |
| 
 | |
|             if (prev_noise) {
 | |
|                 /* save noise values */
 | |
|                 prev_noise->step[sfb] = s;
 | |
|                 prev_noise->noise[sfb] = noise;
 | |
|             }
 | |
| 
 | |
|             distort_ = r_l3_xmin * noise;
 | |
| 
 | |
|             /* multiplying here is adding in dB, but can overflow */
 | |
|             noise = FAST_LOG10(Max(distort_, 1E-20f));
 | |
| 
 | |
|             if (prev_noise) {
 | |
|                 /* save noise values */
 | |
|                 prev_noise->noise_log[sfb] = noise;
 | |
|             }
 | |
|         }
 | |
|         *distort++ = distort_;
 | |
| 
 | |
|         if (prev_noise) {
 | |
|             /* save noise values */
 | |
|             prev_noise->global_gain = cod_info->global_gain;;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         /*tot_noise *= Max(noise, 1E-20); */
 | |
|         tot_noise_db += noise;
 | |
| 
 | |
|         if (noise > 0.0) {
 | |
|             int     tmp;
 | |
| 
 | |
|             tmp = Max((int) (noise * 10 + .5), 1);
 | |
|             res->over_SSD += tmp * tmp;
 | |
| 
 | |
|             over++;
 | |
|             /* multiplying here is adding in dB -but can overflow */
 | |
|             /*over_noise *= noise; */
 | |
|             over_noise_db += noise;
 | |
|         }
 | |
|         max_noise = Max(max_noise, noise);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     res->over_count = over;
 | |
|     res->tot_noise = tot_noise_db;
 | |
|     res->over_noise = over_noise_db;
 | |
|     res->max_noise = max_noise;
 | |
| 
 | |
|     return over;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /************************************************************************
 | |
|  *
 | |
|  *  set_pinfo()
 | |
|  *
 | |
|  *  updates plotting data    
 | |
|  *
 | |
|  *  Mark Taylor 2000-??-??                
 | |
|  *
 | |
|  *  Robert Hegemann: moved noise/distortion calc into it
 | |
|  *
 | |
|  ************************************************************************/
 | |
| 
 | |
| static void
 | |
| set_pinfo(lame_internal_flags const *gfc,
 | |
|           gr_info * const cod_info, const III_psy_ratio * const ratio, const int gr, const int ch)
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     int     sfb, sfb2;
 | |
|     int     j, i, l, start, end, bw;
 | |
|     FLOAT   en0, en1;
 | |
|     FLOAT const ifqstep = (cod_info->scalefac_scale == 0) ? .5 : 1.0;
 | |
|     int const *const scalefac = cod_info->scalefac;
 | |
| 
 | |
|     FLOAT   l3_xmin[SFBMAX], xfsf[SFBMAX];
 | |
|     calc_noise_result noise;
 | |
| 
 | |
|     (void) calc_xmin(gfc, ratio, cod_info, l3_xmin);
 | |
|     (void) calc_noise(cod_info, l3_xmin, xfsf, &noise, 0);
 | |
| 
 | |
|     j = 0;
 | |
|     sfb2 = cod_info->sfb_lmax;
 | |
|     if (cod_info->block_type != SHORT_TYPE && !cod_info->mixed_block_flag)
 | |
|         sfb2 = 22;
 | |
|     for (sfb = 0; sfb < sfb2; sfb++) {
 | |
|         start = gfc->scalefac_band.l[sfb];
 | |
|         end = gfc->scalefac_band.l[sfb + 1];
 | |
|         bw = end - start;
 | |
|         for (en0 = 0.0; j < end; j++)
 | |
|             en0 += cod_info->xr[j] * cod_info->xr[j];
 | |
|         en0 /= bw;
 | |
|         /* convert to MDCT units */
 | |
|         en1 = 1e15;     /* scaling so it shows up on FFT plot */
 | |
|         gfc->pinfo->en[gr][ch][sfb] = en1 * en0;
 | |
|         gfc->pinfo->xfsf[gr][ch][sfb] = en1 * l3_xmin[sfb] * xfsf[sfb] / bw;
 | |
| 
 | |
|         if (ratio->en.l[sfb] > 0 && !cfg->ATHonly)
 | |
|             en0 = en0 / ratio->en.l[sfb];
 | |
|         else
 | |
|             en0 = 0.0;
 | |
| 
 | |
|         gfc->pinfo->thr[gr][ch][sfb] = en1 * Max(en0 * ratio->thm.l[sfb], gfc->ATH->l[sfb]);
 | |
| 
 | |
|         /* there is no scalefactor bands >= SBPSY_l */
 | |
|         gfc->pinfo->LAMEsfb[gr][ch][sfb] = 0;
 | |
|         if (cod_info->preflag && sfb >= 11)
 | |
|             gfc->pinfo->LAMEsfb[gr][ch][sfb] = -ifqstep * pretab[sfb];
 | |
| 
 | |
|         if (sfb < SBPSY_l) {
 | |
|             assert(scalefac[sfb] >= 0); /* scfsi should be decoded by caller side */
 | |
|             gfc->pinfo->LAMEsfb[gr][ch][sfb] -= ifqstep * scalefac[sfb];
 | |
|         }
 | |
|     }                   /* for sfb */
 | |
| 
 | |
|     if (cod_info->block_type == SHORT_TYPE) {
 | |
|         sfb2 = sfb;
 | |
|         for (sfb = cod_info->sfb_smin; sfb < SBMAX_s; sfb++) {
 | |
|             start = gfc->scalefac_band.s[sfb];
 | |
|             end = gfc->scalefac_band.s[sfb + 1];
 | |
|             bw = end - start;
 | |
|             for (i = 0; i < 3; i++) {
 | |
|                 for (en0 = 0.0, l = start; l < end; l++) {
 | |
|                     en0 += cod_info->xr[j] * cod_info->xr[j];
 | |
|                     j++;
 | |
|                 }
 | |
|                 en0 = Max(en0 / bw, 1e-20);
 | |
|                 /* convert to MDCT units */
 | |
|                 en1 = 1e15; /* scaling so it shows up on FFT plot */
 | |
| 
 | |
|                 gfc->pinfo->en_s[gr][ch][3 * sfb + i] = en1 * en0;
 | |
|                 gfc->pinfo->xfsf_s[gr][ch][3 * sfb + i] = en1 * l3_xmin[sfb2] * xfsf[sfb2] / bw;
 | |
|                 if (ratio->en.s[sfb][i] > 0)
 | |
|                     en0 = en0 / ratio->en.s[sfb][i];
 | |
|                 else
 | |
|                     en0 = 0.0;
 | |
|                 if (cfg->ATHonly || cfg->ATHshort)
 | |
|                     en0 = 0;
 | |
| 
 | |
|                 gfc->pinfo->thr_s[gr][ch][3 * sfb + i] =
 | |
|                     en1 * Max(en0 * ratio->thm.s[sfb][i], gfc->ATH->s[sfb]);
 | |
| 
 | |
|                 /* there is no scalefactor bands >= SBPSY_s */
 | |
|                 gfc->pinfo->LAMEsfb_s[gr][ch][3 * sfb + i]
 | |
|                     = -2.0 * cod_info->subblock_gain[i];
 | |
|                 if (sfb < SBPSY_s) {
 | |
|                     gfc->pinfo->LAMEsfb_s[gr][ch][3 * sfb + i] -= ifqstep * scalefac[sfb2];
 | |
|                 }
 | |
|                 sfb2++;
 | |
|             }
 | |
|         }
 | |
|     }                   /* block type short */
 | |
|     gfc->pinfo->LAMEqss[gr][ch] = cod_info->global_gain;
 | |
|     gfc->pinfo->LAMEmainbits[gr][ch] = cod_info->part2_3_length + cod_info->part2_length;
 | |
|     gfc->pinfo->LAMEsfbits[gr][ch] = cod_info->part2_length;
 | |
| 
 | |
|     gfc->pinfo->over[gr][ch] = noise.over_count;
 | |
|     gfc->pinfo->max_noise[gr][ch] = noise.max_noise * 10.0;
 | |
|     gfc->pinfo->over_noise[gr][ch] = noise.over_noise * 10.0;
 | |
|     gfc->pinfo->tot_noise[gr][ch] = noise.tot_noise * 10.0;
 | |
|     gfc->pinfo->over_SSD[gr][ch] = noise.over_SSD;
 | |
| }
 | |
| 
 | |
| 
 | |
| /************************************************************************
 | |
|  *
 | |
|  *  set_frame_pinfo()
 | |
|  *
 | |
|  *  updates plotting data for a whole frame  
 | |
|  *
 | |
|  *  Robert Hegemann 2000-10-21                          
 | |
|  *
 | |
|  ************************************************************************/
 | |
| 
 | |
| void
 | |
| set_frame_pinfo(lame_internal_flags * gfc, const III_psy_ratio ratio[2][2])
 | |
| {
 | |
|     SessionConfig_t const *const cfg = &gfc->cfg;
 | |
|     int     ch;
 | |
|     int     gr;
 | |
| 
 | |
|     /* for every granule and channel patch l3_enc and set info
 | |
|      */
 | |
|     for (gr = 0; gr < cfg->mode_gr; gr++) {
 | |
|         for (ch = 0; ch < cfg->channels_out; ch++) {
 | |
|             gr_info *const cod_info = &gfc->l3_side.tt[gr][ch];
 | |
|             int     scalefac_sav[SFBMAX];
 | |
|             memcpy(scalefac_sav, cod_info->scalefac, sizeof(scalefac_sav));
 | |
| 
 | |
|             /* reconstruct the scalefactors in case SCFSI was used 
 | |
|              */
 | |
|             if (gr == 1) {
 | |
|                 int     sfb;
 | |
|                 for (sfb = 0; sfb < cod_info->sfb_lmax; sfb++) {
 | |
|                     if (cod_info->scalefac[sfb] < 0) /* scfsi */
 | |
|                         cod_info->scalefac[sfb] = gfc->l3_side.tt[0][ch].scalefac[sfb];
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             set_pinfo(gfc, cod_info, &ratio[gr][ch], gr, ch);
 | |
|             memcpy(cod_info->scalefac, scalefac_sav, sizeof(scalefac_sav));
 | |
|         }               /* for ch */
 | |
|     }                   /* for gr */
 | |
| }
 |