1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-09 00:02:36 +02:00
audacity/src/MemoryX.h
2018-05-10 00:56:37 -04:00

803 lines
22 KiB
C++

#ifndef __AUDACITY_MEMORY_X_H__
#define __AUDACITY_MEMORY_X_H__
// C++ standard header <memory> with a few extensions
#include <memory>
#include <cstdlib> // Needed for free.
#ifndef safenew
#define safenew new
#endif
// Conditional compilation switch indicating whether to rely on
// std:: containers knowing about rvalue references
#undef __AUDACITY_OLD_STD__
#include <functional>
#if !(_MSC_VER >= 1800 || __cplusplus >= 201402L)
/* replicate the very useful C++14 make_unique for those build environments
that don't implement it yet.
typical useage:
auto p = std::make_unique<Myclass>(ctorArg1, ctorArg2, ... ctorArgN);
p->DoSomething();
auto q = std::make_unique<Myclass[]>(count);
q[0].DoSomethingElse();
The first hides naked NEW and DELETE from the source code.
The second hides NEW[] and DELETE[]. Both of course ensure destruction if
you don't use something like std::move(p) or q.release(). Both expressions require
that you identify the type only once, which is brief and less error prone.
(Whereas this omission of [] might invite a runtime error:
std::unique_ptr<Myclass> q { safenew Myclass[count] }; )
Some C++11 tricks needed here are (1) variadic argument lists and
(2) making the compile-time dispatch work correctly. You can't have
a partially specialized template function, but you get the effect of that
by other metaprogramming means.
*/
namespace std {
// For overloading resolution
template <typename X> struct __make_unique_result {
using scalar_case = unique_ptr<X>;
};
// Partial specialization of the struct for array case
template <typename X> struct __make_unique_result<X[]> {
using array_case = unique_ptr<X[]>;
using element = X;
};
// Now the scalar version of unique_ptr
template<typename X, typename... Args> inline
typename __make_unique_result<X>::scalar_case
make_unique(Args&&... args)
{
return typename __make_unique_result<X>::scalar_case
{ safenew X(forward<Args>(args)...) };
}
// Now the array version of unique_ptr
// The compile-time dispatch trick is that the non-existence
// of the scalar_case type makes the above overload
// unavailable when the template parameter is explicit
template<typename X> inline
typename __make_unique_result<X>::array_case
make_unique(size_t count)
{
return typename __make_unique_result<X>::array_case
{ safenew typename __make_unique_result<X>::element[count] };
}
}
#endif
/*
* ArrayOf<X>
* Not to be confused with std::array (which takes a fixed size) or std::vector
* This maintains a pointer allocated by NEW X[]. It's cheap: only one pointer,
* with no size and capacity information for resizing as for vector, and if X is
* a built-in numeric or pointer type, by default there is no zero filling at
* allocation time.
*/
template<typename X>
class ArrayOf : public std::unique_ptr<X[]>
{
public:
ArrayOf() {}
template<typename Integral>
explicit ArrayOf(Integral count, bool initialize = false)
{
static_assert(std::is_unsigned<Integral>::value, "Unsigned arguments only");
reinit(count, initialize);
}
//ArrayOf(const ArrayOf&) PROHIBITED;
ArrayOf(const ArrayOf&) = delete;
ArrayOf(ArrayOf&& that)
: std::unique_ptr < X[] >
(std::move((std::unique_ptr < X[] >&)(that)))
{
}
ArrayOf& operator= (ArrayOf &&that)
{
std::unique_ptr<X[]>::operator=(std::move(that));
return *this;
}
ArrayOf& operator= (std::unique_ptr<X[]> &&that)
{
std::unique_ptr<X[]>::operator=(std::move(that));
return *this;
}
template< typename Integral >
void reinit(Integral count,
bool initialize = false)
{
static_assert(std::is_unsigned<Integral>::value, "Unsigned arguments only");
if (initialize)
// Initialize elements (usually, to zero for a numerical type)
std::unique_ptr<X[]>::reset(safenew X[count]{});
else
// Avoid the slight initialization overhead
std::unique_ptr<X[]>::reset(safenew X[count]);
}
};
/*
* ArraysOf<X>
* This simplifies arrays of arrays, each array separately allocated with NEW[]
* But it might be better to use std::Array<ArrayOf<X>, N> for some small constant N
* Or use just one array when sub-arrays have a common size and are not large.
*/
template<typename X>
class ArraysOf : public ArrayOf<ArrayOf<X>>
{
public:
ArraysOf() {}
template<typename Integral>
explicit ArraysOf(Integral N)
: ArrayOf<ArrayOf<X>>( N )
{}
template<typename Integral1, typename Integral2 >
ArraysOf(Integral1 N, Integral2 M, bool initialize = false)
: ArrayOf<ArrayOf<X>>( N )
{
static_assert(std::is_unsigned<Integral1>::value, "Unsigned arguments only");
static_assert(std::is_unsigned<Integral2>::value, "Unsigned arguments only");
for (size_t ii = 0; ii < N; ++ii)
(*this)[ii] = ArrayOf<X>{ M, initialize };
}
//ArraysOf(const ArraysOf&) PROHIBITED;
ArraysOf(const ArraysOf&) =delete;
ArraysOf& operator= (ArraysOf&& that)
{
ArrayOf<ArrayOf<X>>::operator=(std::move(that));
return *this;
}
template< typename Integral >
void reinit(Integral count)
{
ArrayOf<ArrayOf<X>>::reinit( count );
}
template< typename Integral >
void reinit(Integral count, bool initialize)
{
ArrayOf<ArrayOf<X>>::reinit( count, initialize );
}
template<typename Integral1, typename Integral2 >
void reinit(Integral1 countN, Integral2 countM, bool initialize = false)
{
static_assert(std::is_unsigned<Integral1>::value, "Unsigned arguments only");
static_assert(std::is_unsigned<Integral2>::value, "Unsigned arguments only");
reinit(countN, false);
for (size_t ii = 0; ii < countN; ++ii)
(*this)[ii].reinit(countM, initialize);
}
};
/*
* template class Maybe<X>
* Can be used for monomorphic objects that are stack-allocable, but only conditionally constructed.
* You might also use it as a member.
* Initialize with create(), then use like a smart pointer,
* with *, ->, get(), reset(), or in if()
*/
// Placement-NEW is used below, and that does not cooperate with the DEBUG_NEW for Visual Studio
#ifdef _DEBUG
#ifdef _MSC_VER
#undef new
#endif
#endif
template<typename X>
class Maybe {
public:
// Construct as NULL
Maybe() {}
// Supply the copy and move, so you might use this as a class member too
Maybe(const Maybe &that)
{
if (that.get())
create(*that);
}
Maybe& operator= (const Maybe &that)
{
if (this != &that) {
if (that.get())
create(*that);
else
reset();
}
return *this;
}
Maybe(Maybe &&that)
{
if (that.get())
create(::std::move(*that));
}
Maybe& operator= (Maybe &&that)
{
if (this != &that) {
if (that.get())
create(::std::move(*that));
else
reset();
}
return *this;
}
// Make an object in the buffer, passing constructor arguments,
// but destroying any previous object first
// Note that if constructor throws, we remain in a consistent
// NULL state -- giving exception safety but only weakly
// (previous value was lost if present)
template<typename... Args>
void create(Args&&... args)
{
// Lose any old value
reset();
// Create NEW value
pp = safenew(address()) X(std::forward<Args>(args)...);
}
// Destroy any object that was built in it
~Maybe()
{
reset();
}
// Pointer-like operators
// Dereference, with the usual bad consequences if NULL
X &operator* () const
{
return *pp;
}
X *operator-> () const
{
return pp;
}
X* get() const
{
return pp;
}
void reset()
{
if (pp)
pp->~X(), pp = nullptr;
}
// So you can say if(ptr)
explicit operator bool() const
{
return pp != nullptr;
}
private:
X* address()
{
return reinterpret_cast<X*>(&storage);
}
// Data
#if 0
typename ::std::aligned_storage<
sizeof(X)
// , alignof(X) // Not here yet in all compilers
>::type storage{};
#else
union {
double d;
char storage[sizeof(X)];
};
#endif
X* pp{ nullptr };
};
// Restore definition of debug new
#ifdef _DEBUG
#ifdef _MSC_VER
#undef THIS_FILE
static char*THIS_FILE = __FILE__;
#define new new(_NORMAL_BLOCK, THIS_FILE, __LINE__)
#endif
#endif
// Frequently, we need to use a vector or list of unique_ptr if we can, but default
// to shared_ptr if we can't (because containers know how to copy elements only,
// not move them).
#ifdef __AUDACITY_OLD_STD__
template<typename T> using movable_ptr = std::shared_ptr<T>;
template<typename T, typename Deleter> using movable_ptr_with_deleter_base = std::shared_ptr<T>;
#else
template<typename T> using movable_ptr = std::unique_ptr<T>;
template<typename T, typename Deleter> using movable_ptr_with_deleter_base = std::unique_ptr<T, Deleter>;
#endif
template<typename T, typename... Args>
inline movable_ptr<T> make_movable(Args&&... args)
{
return std::
#ifdef __AUDACITY_OLD_STD__
make_shared
#else
make_unique
#endif
<T>(std::forward<Args>(args)...);
}
template<typename T, typename Deleter> class movable_ptr_with_deleter
: public movable_ptr_with_deleter_base < T, Deleter >
{
public:
// Do not expose a constructor that takes only a pointer without deleter
// That is important when implemented with shared_ptr
movable_ptr_with_deleter() {};
movable_ptr_with_deleter(T* p, const Deleter &d)
: movable_ptr_with_deleter_base<T, Deleter>( p, d ) {}
#ifdef __AUDACITY_OLD_STD__
// copy
movable_ptr_with_deleter(const movable_ptr_with_deleter &that)
: movable_ptr_with_deleter_base < T, Deleter > ( that )
{
}
movable_ptr_with_deleter &operator= (const movable_ptr_with_deleter& that)
{
if (this != &that) {
((movable_ptr_with_deleter_base<T, Deleter>&)(*this)) =
that;
}
return *this;
}
#else
// move
movable_ptr_with_deleter(movable_ptr_with_deleter &&that)
: movable_ptr_with_deleter_base < T, Deleter > ( std::move(that) )
{
}
movable_ptr_with_deleter &operator= (movable_ptr_with_deleter&& that)
{
if (this != &that) {
((movable_ptr_with_deleter_base<T, Deleter>&)(*this)) =
std::move(that);
}
return *this;
}
#endif
};
template<typename T, typename Deleter, typename... Args>
inline movable_ptr_with_deleter<T, Deleter>
make_movable_with_deleter(const Deleter &d, Args&&... args)
{
return movable_ptr_with_deleter<T, Deleter>(safenew T(std::forward<Args>(args)...), d);
}
/*
* A deleter for pointers obtained with malloc
*/
struct freer { void operator() (void *p) const { free(p); } };
/*
* A useful alias for holding the result of malloc
*/
template< typename T >
using MallocPtr = std::unique_ptr< T, freer >;
/*
* A useful alias for holding the result of strup and similar
*/
template <typename Character = char>
using MallocString = std::unique_ptr< Character[], freer >;
/*
* A deleter class to supply the second template parameter of unique_ptr for
* classes like wxWindow that should be sent a message called Destroy rather
* than be deleted directly
*/
template <typename T>
struct Destroyer {
void operator () (T *p) const { if (p) p->Destroy(); }
};
/*
* a convenience for using Destroyer
*/
template <typename T>
using Destroy_ptr = std::unique_ptr<T, Destroyer<T>>;
/*
* "finally" as in The C++ Programming Language, 4th ed., p. 358
* Useful for defining ad-hoc RAII actions.
* typical usage:
* auto cleanup = finally([&]{ ... code; ... });
*/
// Construct this from any copyable function object, such as a lambda
template <typename F>
struct Final_action {
Final_action(F f) : clean( f ) {}
~Final_action() { clean(); }
F clean;
};
// Function template with type deduction lets you construct Final_action
// without typing any angle brackets
template <typename F>
Final_action<F> finally (F f)
{
return Final_action<F>(f);
}
#include <wx/utils.h> // for wxMin, wxMax
#include <algorithm>
/*
* Set a variable temporarily in a scope
*/
template< typename T >
struct RestoreValue {
T oldValue;
void operator () ( T *p ) const { if (p) *p = oldValue; }
};
template< typename T >
class ValueRestorer : public std::unique_ptr< T, RestoreValue<T> >
{
using std::unique_ptr< T, RestoreValue<T> >::reset; // make private
// But release() remains public and can be useful to commit a changed value
public:
explicit ValueRestorer( T &var )
: std::unique_ptr< T, RestoreValue<T> >( &var, { var } )
{}
explicit ValueRestorer( T &var, const T& newValue )
: std::unique_ptr< T, RestoreValue<T> >( &var, { var } )
{ var = newValue; }
ValueRestorer(ValueRestorer &&that)
: std::unique_ptr < T, RestoreValue<T> > ( std::move(that) ) {};
ValueRestorer & operator= (ValueRestorer &&that)
{
if (this != &that)
std::unique_ptr < T, RestoreValue<T> >::operator=(std::move(that));
return *this;
}
};
// inline functions provide convenient parameter type deduction
template< typename T >
ValueRestorer< T > valueRestorer( T& var )
{ return ValueRestorer< T >{ var }; }
template< typename T >
ValueRestorer< T > valueRestorer( T& var, const T& newValue )
{ return ValueRestorer< T >{ var, newValue }; }
/*
* A convenience for use with range-for
*/
template <typename Iterator>
struct IteratorRange : public std::pair<Iterator, Iterator> {
using iterator = Iterator;
using reverse_iterator = std::reverse_iterator<Iterator>;
IteratorRange (const Iterator &a, const Iterator &b)
: std::pair<Iterator, Iterator> ( a, b ) {}
IteratorRange (Iterator &&a, Iterator &&b)
: std::pair<Iterator, Iterator> ( std::move(a), std::move(b) ) {}
IteratorRange< reverse_iterator > reversal () const
{ return { this->rbegin(), this->rend() }; }
Iterator begin() const { return this->first; }
Iterator end() const { return this->second; }
reverse_iterator rbegin() const { return reverse_iterator{ this->second }; }
reverse_iterator rend() const { return reverse_iterator{ this->first }; }
bool empty() const { return this->begin() == this->end(); }
explicit operator bool () const { return !this->empty(); }
size_t size() const { return std::distance(this->begin(), this->end()); }
template <typename T> iterator find(const T &t) const
{ return std::find(this->begin(), this->end(), t); }
template <typename T> long index(const T &t) const
{
auto iter = this->find(t);
if (iter == this->end())
return -1;
return std::distance(this->begin(), iter);
}
template <typename T> bool contains(const T &t) const
{ return this->end() != this->find(t); }
template <typename F> iterator find_if(const F &f) const
{ return std::find_if(this->begin(), this->end(), f); }
template <typename F> long index_if(const F &f) const
{
auto iter = this->find_if(f);
if (iter == this->end())
return -1;
return std::distance(this->begin(), iter);
}
// to do: use std::all_of, any_of, none_of when available on all platforms
template <typename F> bool all_of(const F &f) const
{
auto notF =
[&](typename std::iterator_traits<Iterator>::reference v)
{ return !f(v); };
return !this->any_of( notF );
}
template <typename F> bool any_of(const F &f) const
{ return this->end() != this->find_if(f); }
template <typename F> bool none_of(const F &f) const
{ return !this->any_of(f); }
template<typename T> struct identity
{ const T&& operator () (T &&v) const { return std::forward(v); } };
// Like std::accumulate, but the iterators implied, and with another
// unary operation on the iterator value, pre-composed
template<
typename R,
typename Binary = std::plus< R >,
typename Unary = identity< decltype( *std::declval<Iterator>() ) >
>
R accumulate(
R init,
Binary binary_op = {},
Unary unary_op = {}
) const
{
R result = init;
for (auto&& v : *this)
result = binary_op(result, unary_op(v));
return result;
}
// An overload making it more convenient to use with pointers to member
// functions
template<
typename R,
typename Binary = std::plus< R >,
typename R2, typename C
>
R accumulate(
R init,
Binary binary_op,
R2 (C :: * pmf) () const
) const
{
return this->accumulate( init, binary_op, std::mem_fun( pmf ) );
}
// Some accumulations frequent enough to be worth abbreviation:
template<
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
>
R min( Unary unary_op = {} ) const
{
return this->accumulate(
std::numeric_limits< R >::max(),
(const R&(*)(const R&, const R&)) std::min,
unary_op
);
}
template<
typename R2, typename C,
typename R = R2
>
R min( R2 (C :: * pmf) () const ) const
{
return this->min( std::mem_fun( pmf ) );
}
template<
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
>
R max( Unary unary_op = {} ) const
{
return this->accumulate(
-std::numeric_limits< R >::max(),
// std::numeric_limits< R >::lowest(), // TODO C++11
(const R&(*)(const R&, const R&)) std::max,
unary_op
);
}
template<
typename R2, typename C,
typename R = R2
>
R max( R2 (C :: * pmf) () const ) const
{
return this->max( std::mem_fun( pmf ) );
}
template<
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
>
R sum( Unary unary_op = {} ) const
{
return this->accumulate(
R{ 0 },
std::plus< R >{},
unary_op
);
}
template<
typename R2, typename C,
typename R = R2
>
R sum( R2 (C :: * pmf) () const ) const
{
return this->sum( std::mem_fun( pmf ) );
}
};
template< typename Iterator>
IteratorRange< Iterator >
make_iterator_range( const Iterator &i1, const Iterator &i2 )
{
return { i1, i2 };
}
template< typename Container >
IteratorRange< typename Container::iterator >
make_iterator_range( Container &container )
{
return { container.begin(), container.end() };
}
template< typename Container >
IteratorRange< typename Container::const_iterator >
make_iterator_range( const Container &container )
{
return { container.begin(), container.end() };
}
/*
* Transform an iterator sequence, as another iterator sequence
*/
template <
typename Result,
typename Iterator
>
class transform_iterator
: public std::iterator<
typename std::iterator_traits<Iterator>::iterator_category,
const Result
>
{
// This takes a function on iterators themselves, not on the
// dereference of those iterators, in case you ever need the generality.
using Function = std::function< Result( const Iterator& ) >;
private:
Iterator mIterator;
Function mFunction;
public:
transform_iterator(const Iterator &iterator, const Function &function)
: mIterator( iterator )
, mFunction( function )
{}
transform_iterator &operator ++ ()
{ ++this->mIterator; return *this; }
transform_iterator operator ++ (int)
{ auto copy{*this}; ++this->mIterator; return copy; }
transform_iterator &operator -- ()
{ --this->mIterator; return *this; }
transform_iterator operator -- (int)
{ auto copy{*this}; --this->mIterator; return copy; }
typename transform_iterator::reference operator * ()
{ return this->mFunction(this->mIterator); }
friend inline bool operator == (
const transform_iterator &a, const transform_iterator &b)
{ return a.mIterator == b.mIterator; }
friend inline bool operator != (
const transform_iterator &a, const transform_iterator &b)
{ return !(a == b); }
};
template <
typename Iterator,
typename Function
>
transform_iterator<
decltype( std::declval<Function>() ( std::declval<Iterator>() ) ),
Iterator
>
make_transform_iterator(const Iterator &iterator, Function function)
{
return { iterator, function };
}
template < typename Function, typename Iterator > struct value_transformer
{
// Adapts a function on values to a function on iterators.
Function function;
auto operator () (const Iterator &iterator)
-> decltype( function( *iterator ) ) const
{ return this->function( *iterator ); }
};
template <
typename Function,
typename Iterator
>
using value_transform_iterator = transform_iterator<
decltype( std::declval<Function>()( *std::declval<Iterator>() ) ),
Iterator
>;
template <
typename Function,
typename Iterator
>
value_transform_iterator< Function, Iterator >
make_value_transform_iterator(const Iterator &iterator, Function function)
{
using NewFunction = value_transformer<Function, Iterator>;
return { iterator, NewFunction{ function } };
}
#if !wxCHECK_VERSION(3, 1, 0)
// For using std::unordered_map on wxString
namespace std
{
template<typename T> struct hash;
template<> struct hash< wxString > {
size_t operator () (const wxString &str) const // noexcept
{
auto stdstr = str.ToStdWstring(); // no allocations, a cheap fetch
using Hasher = hash< decltype(stdstr) >;
return Hasher{}( stdstr );
}
};
}
#endif
#endif // __AUDACITY_MEMORY_X_H__