mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-08 15:52:53 +02:00
114 lines
2.3 KiB
C
114 lines
2.3 KiB
C
/* A program to test fast 1d real convolution */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <fp.h>
|
|
#include <math.h>
|
|
#include "fftlib.h"
|
|
#include "fftext.h"
|
|
|
|
#if macintosh
|
|
#include <timer.h>
|
|
#endif
|
|
|
|
|
|
#define BIPRAND(a) (2.0/(RAND_MAX+1.0)*a-1.0)
|
|
//#define BIPRAND(a) round(100*(2.0/(RAND_MAX+1.0)*a-1.0))
|
|
|
|
void main(){
|
|
const long N2 = 2; /* the number ffts to test */
|
|
long N = 2048; /* size of FFTs, must be power of 2 */
|
|
long kernSize = 1003; /* kernal size must be less than N */
|
|
long dataSize = N-kernSize+1; /* data size */
|
|
float *a;
|
|
float *b;
|
|
long i1;
|
|
long i2;
|
|
long TheErr;
|
|
long M;
|
|
|
|
FILE *fdataout; /* output file */
|
|
|
|
unsigned int randseed = 777;
|
|
int rannum;
|
|
#if macintosh
|
|
UnsignedWide TheTime1;
|
|
Microseconds(&TheTime1);
|
|
randseed = TheTime1.lo;
|
|
#endif
|
|
|
|
printf(" %6d Byte Floats \n", sizeof(a[0]));
|
|
printf(" randseed = %10u\n", randseed);
|
|
|
|
srand(randseed);
|
|
M = roundtol(LOG2(N));
|
|
N = POW2(M);
|
|
|
|
printf("fft size = %6d, ", N);
|
|
|
|
if (dataSize <= 0) TheErr = 22;
|
|
else TheErr = 0;
|
|
|
|
if(!TheErr){
|
|
TheErr = fftInit(M);
|
|
}
|
|
|
|
a = (float *) calloc(N2*N,sizeof(float) ); // calloc to zero pad data to fill N
|
|
if (a == 0) TheErr = 2;
|
|
if(!TheErr){
|
|
b = (float *) calloc(N2*N,sizeof(float) ); // calloc to zero pad data to fill N
|
|
if (b == 0) TheErr = 2;
|
|
}
|
|
if(!TheErr){
|
|
fdataout = fopen("convdat.cnv", "wb");
|
|
if (fdataout == NULL) TheErr = -50;
|
|
}
|
|
if(!TheErr){
|
|
|
|
/* write sizes to fdataout */
|
|
fwrite(&dataSize, sizeof(dataSize), 1, fdataout);
|
|
fwrite(&kernSize, sizeof(kernSize), 1, fdataout);
|
|
fwrite(&N2, sizeof(N2), 1, fdataout);
|
|
/* set up a simple test case and write to fdataout */
|
|
for (i2=0; i2<N2; i2++){
|
|
for (i1=0; i1<dataSize; i1++){
|
|
rannum = rand();
|
|
a[i2*N+i1] = BIPRAND(rannum);
|
|
}
|
|
fwrite(&a[i2*N], dataSize*sizeof(float), 1, fdataout);
|
|
}
|
|
for (i2=0; i2<N2; i2++){
|
|
for (i1=0; i1<kernSize; i1++){
|
|
rannum = rand();
|
|
b[i2*N+i1] = BIPRAND(rannum);
|
|
}
|
|
fwrite(&b[i2*N], kernSize*sizeof(float), 1, fdataout);
|
|
}
|
|
|
|
|
|
/* fast convolution of zero padded sequences */
|
|
rffts(a, M, N2);
|
|
rffts(b, M, N2);
|
|
for (i2=0; i2<N2*N; i2+=N){
|
|
rspectprod(&a[i2], &b[i2], &a[i2], N);
|
|
}
|
|
riffts(a, M, N2);
|
|
|
|
/* write out answer */
|
|
fwrite(a, N2*N*sizeof(float), 1, fdataout);
|
|
|
|
fclose(fdataout);
|
|
|
|
free(b);
|
|
free(a);
|
|
fftFree();
|
|
}
|
|
else{
|
|
if(TheErr==2) printf(" out of memory \n");
|
|
else printf(" error \n");
|
|
fftFree();
|
|
}
|
|
printf(" Done. \n");
|
|
return;
|
|
}
|