1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-06-16 16:10:06 +02:00
2015-04-07 22:10:17 -05:00

324 lines
11 KiB
C

/* convolve.c -- implements (non-"fast") convolution */
/*
* Note: this code is mostly generated by translate.lsp (see convole.tran
* in the tran directory), but it has been modified by hand to extend the
* stop time to include the "tail" of the convolution beyond the length
* of the first parameter.
*/
/* Original convolve.c modified to do fast convolution. Here are some
* notes:
* The first arg is arbitrary length. The second arg is the impulse
* response, which is converted into a table. Tables have limited maximum
* size, which is good because we're going to use a single FFT for the
* whole impulse response.
*
* The fast convolution works like this:
* inputs are x_snd and h_snd.
* Make h_snd into a table ht of size N, where N is a power of 2.
* Copy ht with zero fill into H of size 2N.
* Compute FFT of H in place.
* Iterate:
* Copy N samples of x_snd into X and zero fill to size 2N.
* Compute FFT of X in place.
* Multiply X by H (result goes into X).
* Compute IFFT of X in place
* Add X to R.
* Now N samples of R can be output.
* Copy 2nd half of R to first half and zero the 2nd half.
* (this is actually done first, and the first time does
* nothing because R is initially filled with zeros)
*
* Length of output is length of x input + length of h
*/
#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
#include <math.h>
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "fftlib.h"
#include "fftext.h"
#include "convolve.h"
void convolve_free();
typedef struct convolve_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type x_snd;
long x_snd_cnt;
sample_block_values_type x_snd_ptr;
sample_type *H; // the FFT of h_snd
int h_len; // true length of H
int N; // length of block, FFTs are of size 2*N
int M; // log2 of 2*N, the FFT size
sample_type *X;
sample_type *R; // result buffer where output is summed
sample_type *R_current;
} convolve_susp_node, *convolve_susp_type;
void h_reverse(sample_type *h, long len)
{
sample_type temp;
int i;
for (i = 0; i < len; i++) {
temp = h[i];
h[i] = h[len - 1];
h[len - 1] = temp;
len--;
}
}
void convolve_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
sample_type *R = susp->R;
sample_type *R_current;
int N = susp->N;
falloc_sample_block(out, "convolve_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* if we need output samples, generate them here */
if (susp->R_current >= R + N) {
/* Copy N samples of x_snd into X and zero fill to size 2N */
int i = 0;
sample_type *X = susp->X;
sample_type *H = susp->H;
int to_copy;
while (i < N) {
if (susp->x_snd_cnt == 0) {
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
if (susp->x_snd->logical_stop_cnt ==
susp->x_snd->current - susp->x_snd_cnt) {
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt);
}
}
if (susp->x_snd_ptr == zero_block->samples) {
min_cnt(&susp->terminate_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt);
/* extend the output to include impulse response */
susp->terminate_cnt += susp->h_len;
}
/* copy no more than the remaining space and no more than
* the amount remaining in the block
*/
to_copy = min(N - i, susp->x_snd_cnt);
memcpy(X + i, susp->x_snd_ptr,
to_copy * sizeof(*susp->x_snd_ptr));
susp->x_snd_ptr += to_copy;
susp->x_snd_cnt -= to_copy;
i += to_copy;
}
/* zero fill to size 2N */
memset(X + N, 0, N * sizeof(X[0]));
/* Compute FFT of X in place */
fftInit(susp->M);
rffts(X, susp->M, 1);
/* Multiply X by H (result goes into X) */
rspectprod(X, H, X, N * 2);
/* Compute IFFT of X in place */
riffts(X, susp->M, 1);
/* Shift R, zero fill, add X, all in one loop */
for (i = 0; i < N; i++) {
R[i] = R[i + N] + X[i];
R[i + N] = X[i + N];
}
/* now N samples of R can be output */
susp->R_current = R;
}
/* compute togo, the number of samples to "compute" */
/* can't use more than what's left in R. R_current is
the next sample of R, so what's left is N - (R - R_current) */
R_current = susp->R_current;
togo = min(togo, N - (R_current - R));
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped &&
susp->susp.log_stop_cnt != UNKNOWN &&
susp->susp.log_stop_cnt <= susp->susp.current + cnt + togo) {
togo = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
n = togo;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = (sample_type) *R_current++;
} while (--n); /* inner loop */
/* using R_current is a bad idea on RS/6000: */
susp->R_current += togo;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* convolve_s_fetch */
void convolve_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
convolve_susp_type susp = (convolve_susp_type) susp;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from x_snd up to final_time for this block of zeros */
while ((round((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >=
susp->x_snd->current)
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr -
(susp->x_snd->current - susp->x_snd_cnt));
susp->x_snd_ptr += n;
susp_took(x_snd_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(a_susp, snd_list);
}
void convolve_mark(snd_susp_type a_susp)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
sound_xlmark(susp->x_snd);
}
void convolve_free(snd_susp_type a_susp)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
free(susp->R);
free(susp->X);
free(susp->H);
sound_unref(susp->x_snd);
ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
}
void convolve_print_tree(snd_susp_type a_susp, int n)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
indent(n);
stdputstr("x_snd:");
sound_print_tree_1(susp->x_snd, n);
}
sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
{
register convolve_susp_type susp;
rate_type sr = x_snd->sr;
time_type t0 = x_snd->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
table_type table;
double log_len;
falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
table = sound_to_table(h_snd);
susp->h_len = table->length;
log_len = log(table->length) / M_LN2; /* compute log-base-2(length) */
susp->M = (int) log_len;
if (susp->M != log_len) susp->M++; /* round up */
susp->N = 1 << susp->M; /* size of data blocks */
susp->M++; /* M = log2(2 * N) */
susp->H = (sample_type *) calloc(2 * susp->N, sizeof(susp->H[0]));
if (!susp->H) {
xlabort("memory allocation failure in convolve");
}
memcpy(susp->H, table->samples, sizeof(susp->H[0]) * susp->N);
table_unref(table); /* don't need table now */
/* remaining N samples are already zero-filled */
if (fftInit(susp->M)) {
free(susp->H);
xlabort("fft initialization error in convolve");
}
rffts(susp->H, susp->M, 1);
susp->X = (sample_type *) calloc(2 * susp->N, sizeof(susp->X[0]));
susp->R = (sample_type *) calloc(2 * susp->N, sizeof(susp->R[0]));
if (!susp->X || !susp->R) {
free(susp->H);
if (susp->X) free(susp->X);
if (susp->R) free(susp->R);
xlabort("memory allocation failed in convolve");
}
susp->R_current = susp->R + susp->N;
susp->susp.fetch = &convolve_s_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);
/* minimum start time over all inputs: */
t0_min = min(x_snd->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = convolve_toss_fetch;
}
/* initialize susp state */
susp->susp.free = convolve_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = convolve_mark;
susp->susp.print_tree = convolve_print_tree;
susp->susp.name = "convolve";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd);
susp->susp.current = 0;
susp->x_snd = x_snd;
susp->x_snd_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_convolve(sound_type x_snd, sound_type h_snd)
{
sound_type x_snd_copy = sound_copy(x_snd);
return snd_make_convolve(x_snd_copy, h_snd);
}