mirror of
https://github.com/cookiengineer/audacity
synced 2025-07-27 14:09:33 +02:00
146 lines
3.7 KiB
C++
146 lines
3.7 KiB
C++
/***************************************************/
|
|
/*! \class DelayA
|
|
\brief STK allpass interpolating delay line class.
|
|
|
|
This Delay subclass implements a fractional-length digital
|
|
delay-line using a first-order allpass filter. A fixed maximum
|
|
length of 4095 and a delay of 0.5 is set using the default
|
|
constructor. Alternatively, the delay and maximum length can be
|
|
set during instantiation with an overloaded constructor.
|
|
|
|
An allpass filter has unity magnitude gain but variable phase
|
|
delay properties, making it useful in achieving fractional delays
|
|
without affecting a signal's frequency magnitude response. In
|
|
order to achieve a maximally flat phase delay response, the
|
|
minimum delay possible in this implementation is limited to a
|
|
value of 0.5.
|
|
|
|
by Perry R. Cook and Gary P. Scavone, 1995 - 2005.
|
|
*/
|
|
/***************************************************/
|
|
|
|
#include "DelayA.h"
|
|
|
|
using namespace Nyq;
|
|
|
|
DelayA :: DelayA() : Delay()
|
|
{
|
|
this->setDelay( 0.5 );
|
|
apInput_ = 0.0;
|
|
doNextOut_ = true;
|
|
}
|
|
|
|
DelayA :: DelayA(StkFloat delay, unsigned long maxDelay)
|
|
{
|
|
if ( delay < 0.0 || maxDelay < 1 ) {
|
|
errorString_ << "DelayA::DelayA: delay must be >= 0.0, maxDelay must be > 0!";
|
|
handleError( StkError::FUNCTION_ARGUMENT );
|
|
}
|
|
|
|
if ( delay > (StkFloat) maxDelay ) {
|
|
errorString_ << "DelayA::DelayA: maxDelay must be > than delay argument!";
|
|
handleError( StkError::FUNCTION_ARGUMENT );
|
|
}
|
|
|
|
// Writing before reading allows delays from 0 to length-1.
|
|
if ( maxDelay > inputs_.size()-1 ) {
|
|
inputs_.resize( maxDelay+1 );
|
|
this->clear();
|
|
}
|
|
|
|
inPoint_ = 0;
|
|
this->setDelay(delay);
|
|
apInput_ = 0.0;
|
|
doNextOut_ = true;
|
|
}
|
|
|
|
DelayA :: ~DelayA()
|
|
{
|
|
}
|
|
|
|
void DelayA :: clear()
|
|
{
|
|
Delay::clear();
|
|
apInput_ = 0.0;
|
|
}
|
|
|
|
void DelayA :: setDelay(StkFloat delay)
|
|
{
|
|
StkFloat outPointer;
|
|
unsigned long length = inputs_.size();
|
|
|
|
if ( delay > inputs_.size() - 1 ) { // The value is too big.
|
|
errorString_ << "DelayA::setDelay: argument (" << delay << ") too big ... setting to maximum!";
|
|
handleError( StkError::WARNING );
|
|
|
|
// Force delay to maxLength
|
|
outPointer = inPoint_ + 1.0;
|
|
delay_ = length - 1;
|
|
}
|
|
else if (delay < 0.5) {
|
|
errorString_ << "DelayA::setDelay: argument (" << delay << ") less than 0.5 not possible!";
|
|
handleError( StkError::WARNING );
|
|
|
|
outPointer = inPoint_ + 0.4999999999;
|
|
delay_ = 0.5;
|
|
}
|
|
else {
|
|
outPointer = inPoint_ - delay + 1.0; // outPoint chases inpoint
|
|
delay_ = delay;
|
|
}
|
|
|
|
if (outPointer < 0)
|
|
outPointer += length; // modulo maximum length
|
|
|
|
outPoint_ = (long) outPointer; // integer part
|
|
if ( outPoint_ == length ) outPoint_ = 0;
|
|
alpha_ = 1.0 + outPoint_ - outPointer; // fractional part
|
|
|
|
if (alpha_ < 0.5) {
|
|
// The optimal range for alpha is about 0.5 - 1.5 in order to
|
|
// achieve the flattest phase delay response.
|
|
outPoint_ += 1;
|
|
if (outPoint_ >= length) outPoint_ -= length;
|
|
alpha_ += (StkFloat) 1.0;
|
|
}
|
|
|
|
coeff_ = ((StkFloat) 1.0 - alpha_) /
|
|
((StkFloat) 1.0 + alpha_); // coefficient for all pass
|
|
}
|
|
|
|
StkFloat DelayA :: getDelay(void) const
|
|
{
|
|
return delay_;
|
|
}
|
|
|
|
StkFloat DelayA :: nextOut(void)
|
|
{
|
|
if ( doNextOut_ ) {
|
|
// Do allpass interpolation delay.
|
|
nextOutput_ = -coeff_ * outputs_[0];
|
|
nextOutput_ += apInput_ + (coeff_ * inputs_[outPoint_]);
|
|
doNextOut_ = false;
|
|
}
|
|
|
|
return nextOutput_;
|
|
}
|
|
|
|
StkFloat DelayA :: computeSample( StkFloat input )
|
|
{
|
|
inputs_[inPoint_++] = input;
|
|
|
|
// Increment input pointer modulo length.
|
|
if (inPoint_ == inputs_.size())
|
|
inPoint_ = 0;
|
|
|
|
outputs_[0] = nextOut();
|
|
doNextOut_ = true;
|
|
|
|
// Save the allpass input and increment modulo length.
|
|
apInput_ = inputs_[outPoint_++];
|
|
if (outPoint_ == inputs_.size())
|
|
outPoint_ = 0;
|
|
|
|
return outputs_[0];
|
|
}
|