1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-07-15 16:17:41 +02:00
2010-01-24 09:19:39 +00:00

118 lines
3.1 KiB
C++

/***************************************************/
/*! \class NRev
\brief CCRMA's NRev reverberator class.
This class is derived from the CLM NRev
function, which is based on the use of
networks of simple allpass and comb delay
filters. This particular arrangement consists
of 6 comb filters in parallel, followed by 3
allpass filters, a lowpass filter, and another
allpass in series, followed by two allpass
filters in parallel with corresponding right
and left outputs.
by Perry R. Cook and Gary P. Scavone, 1995 - 2005.
*/
/***************************************************/
#include "NRev.h"
#include <math.h>
using namespace Nyq;
NRev :: NRev(StkFloat T60)
{
int lengths[15] = {1433, 1601, 1867, 2053, 2251, 2399, 347, 113, 37, 59, 53, 43, 37, 29, 19};
double scaler = Stk::sampleRate() / 25641.0;
int delay, i;
for (i=0; i<15; i++) {
delay = (int) floor(scaler * lengths[i]);
if ( (delay & 1) == 0) delay++;
while ( !this->isPrime(delay) ) delay += 2;
lengths[i] = delay;
}
for (i=0; i<6; i++) {
combDelays_[i].setMaximumDelay( lengths[i] );
combDelays_[i].setDelay( lengths[i] );
combCoefficient_[i] = pow(10.0, (-3 * lengths[i] / (T60 * Stk::sampleRate())));
}
for (i=0; i<8; i++) {
allpassDelays_[i].setMaximumDelay( lengths[i+6] );
allpassDelays_[i].setDelay( lengths[i+6] );
}
this->setT60( T60 );
allpassCoefficient_ = 0.7;
effectMix_ = 0.3;
this->clear();
}
NRev :: ~NRev()
{
}
void NRev :: clear()
{
int i;
for (i=0; i<6; i++) combDelays_[i].clear();
for (i=0; i<8; i++) allpassDelays_[i].clear();
lastOutput_[0] = 0.0;
lastOutput_[1] = 0.0;
lowpassState_ = 0.0;
}
void NRev :: setT60( StkFloat T60 )
{
for ( int i=0; i<6; i++ )
combCoefficient_[i] = pow(10.0, (-3.0 * combDelays_[i].getDelay() / (T60 * Stk::sampleRate())));
}
StkFloat NRev :: computeSample(StkFloat input)
{
StkFloat temp, temp0, temp1, temp2, temp3;
int i;
temp0 = 0.0;
for (i=0; i<6; i++) {
temp = input + (combCoefficient_[i] * combDelays_[i].lastOut());
temp0 += combDelays_[i].tick(temp);
}
for (i=0; i<3; i++) {
temp = allpassDelays_[i].lastOut();
temp1 = allpassCoefficient_ * temp;
temp1 += temp0;
allpassDelays_[i].tick(temp1);
temp0 = -(allpassCoefficient_ * temp1) + temp;
}
// One-pole lowpass filter.
lowpassState_ = 0.7*lowpassState_ + 0.3*temp0;
temp = allpassDelays_[3].lastOut();
temp1 = allpassCoefficient_ * temp;
temp1 += lowpassState_;
allpassDelays_[3].tick(temp1);
temp1 = -(allpassCoefficient_ * temp1) + temp;
temp = allpassDelays_[4].lastOut();
temp2 = allpassCoefficient_ * temp;
temp2 += temp1;
allpassDelays_[4].tick(temp2);
lastOutput_[0] = effectMix_*(-(allpassCoefficient_ * temp2) + temp);
temp = allpassDelays_[5].lastOut();
temp3 = allpassCoefficient_ * temp;
temp3 += temp1;
allpassDelays_[5].tick(temp3);
lastOutput_[1] = effectMix_*(-(allpassCoefficient_ * temp3) + temp);
temp = (1.0 - effectMix_) * input;
lastOutput_[0] += temp;
lastOutput_[1] += temp;
return Effect::lastOut();
}