mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-05 14:18:53 +02:00
762 lines
21 KiB
C++
762 lines
21 KiB
C++
/**********************************************************************
|
|
|
|
Audacity: A Digital Audio Editor
|
|
|
|
Mix.cpp
|
|
|
|
Dominic Mazzoni
|
|
Markus Meyer
|
|
Vaughan Johnson
|
|
|
|
*******************************************************************//**
|
|
|
|
\class Mixer
|
|
\brief Functions for doing the mixdown of the tracks.
|
|
|
|
*//****************************************************************//**
|
|
|
|
\class MixerSpec
|
|
\brief Class used with Mixer.
|
|
|
|
*//*******************************************************************/
|
|
|
|
|
|
#include "Audacity.h"
|
|
|
|
#include "Mix.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <wx/textctrl.h>
|
|
#include <wx/msgdlg.h>
|
|
#include <wx/progdlg.h>
|
|
#include <wx/timer.h>
|
|
#include <wx/intl.h>
|
|
|
|
#include "WaveTrack.h"
|
|
#include "DirManager.h"
|
|
#include "Envelope.h"
|
|
#include "Internat.h"
|
|
#include "Prefs.h"
|
|
#include "Project.h"
|
|
#include "Resample.h"
|
|
#include "float_cast.h"
|
|
|
|
//TODO-MB: wouldn't it make more sense to delete the time track after 'mix and render'?
|
|
bool MixAndRender(TrackList *tracks, TrackFactory *trackFactory,
|
|
double rate, sampleFormat format,
|
|
double startTime, double endTime,
|
|
WaveTrack **newLeft, WaveTrack **newRight)
|
|
{
|
|
// This function was formerly known as "Quick Mix".
|
|
WaveTrack **waveArray;
|
|
Track *t;
|
|
int numWaves = 0; /* number of wave tracks in the selection */
|
|
int numMono = 0; /* number of mono, centre-panned wave tracks in selection*/
|
|
bool mono = false; /* flag if output can be mono without loosing anything*/
|
|
bool oneinput = false; /* flag set to true if there is only one input track
|
|
(mono or stereo) */
|
|
int w;
|
|
|
|
TrackListIterator iter(tracks);
|
|
SelectedTrackListOfKindIterator usefulIter(Track::Wave, tracks);
|
|
// this only iterates tracks which are relevant to this function, i.e.
|
|
// selected WaveTracks. The tracklist is (confusingly) the list of all
|
|
// tracks in the project
|
|
|
|
t = iter.First();
|
|
while (t) {
|
|
if (t->GetSelected() && t->GetKind() == Track::Wave) {
|
|
numWaves++;
|
|
float pan = ((WaveTrack*)t)->GetPan();
|
|
if (t->GetChannel() == Track::MonoChannel && pan == 0)
|
|
numMono++;
|
|
}
|
|
t = iter.Next();
|
|
}
|
|
|
|
if (numMono == numWaves)
|
|
mono = true;
|
|
|
|
/* the next loop will do two things at once:
|
|
* 1. build an array of all the wave tracks were are trying to process
|
|
* 2. determine when the set of WaveTracks starts and ends, in case we
|
|
* need to work out for ourselves when to start and stop rendering.
|
|
*/
|
|
|
|
double mixStartTime = 0.0; /* start time of first track to start */
|
|
bool gotstart = false; // flag indicates we have found a start time
|
|
double mixEndTime = 0.0; /* end time of last track to end */
|
|
double tstart, tend; // start and end times for one track.
|
|
|
|
waveArray = new WaveTrack *[numWaves];
|
|
w = 0;
|
|
t = iter.First();
|
|
|
|
while (t) {
|
|
if (t->GetSelected() && t->GetKind() == Track::Wave) {
|
|
waveArray[w++] = (WaveTrack *) t;
|
|
tstart = t->GetStartTime();
|
|
tend = t->GetEndTime();
|
|
if (tend > mixEndTime)
|
|
mixEndTime = tend;
|
|
// try and get the start time. If the track is empty we will get 0,
|
|
// which is ambiguous because it could just mean the track starts at
|
|
// the beginning of the project, as well as empty track. The give-away
|
|
// is that an empty track also ends at zero.
|
|
|
|
if (tstart != tend) {
|
|
// we don't get empty tracks here
|
|
if (!gotstart) {
|
|
// no previous start, use this one unconditionally
|
|
mixStartTime = tstart;
|
|
gotstart = true;
|
|
} else if (tstart < mixStartTime)
|
|
mixStartTime = tstart; // have a start, only make it smaller
|
|
} // end if start and end are different
|
|
} // end if track is a selected WaveTrack.
|
|
/** @TODO: could we not use a SelectedTrackListOfKindIterator here? */
|
|
t = iter.Next();
|
|
}
|
|
|
|
/* create the destination track (new track) */
|
|
if ((numWaves == 1) || ((numWaves == 2) && (usefulIter.First()->GetLink() != NULL)))
|
|
oneinput = true;
|
|
// only one input track (either 1 mono or one linked stereo pair)
|
|
|
|
WaveTrack *mixLeft = trackFactory->NewWaveTrack(format, rate);
|
|
if (oneinput)
|
|
mixLeft->SetName(usefulIter.First()->GetName()); /* set name of output track to be the same as the sole input track */
|
|
else
|
|
mixLeft->SetName(_("Mix"));
|
|
mixLeft->SetOffset(mixStartTime);
|
|
WaveTrack *mixRight = 0;
|
|
if (mono) {
|
|
mixLeft->SetChannel(Track::MonoChannel);
|
|
}
|
|
else {
|
|
mixRight = trackFactory->NewWaveTrack(format, rate);
|
|
if (oneinput) {
|
|
if (usefulIter.First()->GetLink() != NULL) // we have linked track
|
|
mixLeft->SetName(usefulIter.First()->GetLink()->GetName()); /* set name to match input track's right channel!*/
|
|
else
|
|
mixLeft->SetName(usefulIter.First()->GetName()); /* set name to that of sole input channel */
|
|
}
|
|
else
|
|
mixRight->SetName(_("Mix"));
|
|
mixLeft->SetChannel(Track::LeftChannel);
|
|
mixRight->SetChannel(Track::RightChannel);
|
|
mixRight->SetOffset(mixStartTime);
|
|
mixLeft->SetLinked(true);
|
|
}
|
|
|
|
|
|
|
|
int maxBlockLen = mixLeft->GetIdealBlockSize();
|
|
|
|
// If the caller didn't specify a time range, use the whole range in which
|
|
// any input track had clips in it.
|
|
if (startTime == endTime) {
|
|
startTime = mixStartTime;
|
|
endTime = mixEndTime;
|
|
}
|
|
|
|
Mixer *mixer = new Mixer(numWaves, waveArray, tracks->GetTimeTrack(),
|
|
startTime, endTime, mono ? 1 : 2, maxBlockLen, false,
|
|
rate, format);
|
|
|
|
::wxSafeYield();
|
|
ProgressDialog *progress = new ProgressDialog(_("Mix and Render"),
|
|
_("Mixing and rendering tracks"));
|
|
|
|
int updateResult = eProgressSuccess;
|
|
while(updateResult == eProgressSuccess) {
|
|
sampleCount blockLen = mixer->Process(maxBlockLen);
|
|
|
|
if (blockLen == 0)
|
|
break;
|
|
|
|
if (mono) {
|
|
samplePtr buffer = mixer->GetBuffer();
|
|
mixLeft->Append(buffer, format, blockLen);
|
|
}
|
|
else {
|
|
samplePtr buffer;
|
|
buffer = mixer->GetBuffer(0);
|
|
mixLeft->Append(buffer, format, blockLen);
|
|
buffer = mixer->GetBuffer(1);
|
|
mixRight->Append(buffer, format, blockLen);
|
|
}
|
|
|
|
updateResult = progress->Update(mixer->MixGetCurrentTime() - startTime, endTime - startTime);
|
|
}
|
|
|
|
delete progress;
|
|
|
|
mixLeft->Flush();
|
|
if (!mono)
|
|
mixRight->Flush();
|
|
if (updateResult == eProgressCancelled || updateResult == eProgressFailed)
|
|
{
|
|
delete mixLeft;
|
|
if (!mono)
|
|
delete mixRight;
|
|
} else {
|
|
*newLeft = mixLeft;
|
|
if (!mono)
|
|
*newRight = mixRight;
|
|
|
|
#if 0
|
|
int elapsedMS = wxGetElapsedTime();
|
|
double elapsedTime = elapsedMS * 0.001;
|
|
double maxTracks = totalTime / (elapsedTime / numWaves);
|
|
|
|
// Note: these shouldn't be translated - they're for debugging
|
|
// and profiling only.
|
|
printf(" Tracks: %d\n", numWaves);
|
|
printf(" Mix length: %f sec\n", totalTime);
|
|
printf("Elapsed time: %f sec\n", elapsedTime);
|
|
printf("Max number of tracks to mix in real time: %f\n", maxTracks);
|
|
#endif
|
|
}
|
|
|
|
delete[] waveArray;
|
|
delete mixer;
|
|
|
|
return (updateResult == eProgressSuccess || updateResult == eProgressStopped);
|
|
}
|
|
|
|
Mixer::Mixer(int numInputTracks, WaveTrack **inputTracks,
|
|
TimeTrack *timeTrack,
|
|
double startTime, double stopTime,
|
|
int numOutChannels, int outBufferSize, bool outInterleaved,
|
|
double outRate, sampleFormat outFormat,
|
|
bool highQuality, MixerSpec *mixerSpec)
|
|
{
|
|
int i;
|
|
|
|
mHighQuality = highQuality;
|
|
mNumInputTracks = numInputTracks;
|
|
mInputTrack = new WaveTrack*[mNumInputTracks];
|
|
mSamplePos = new sampleCount[mNumInputTracks];
|
|
for(i=0; i<mNumInputTracks; i++) {
|
|
mInputTrack[i] = inputTracks[i];
|
|
mSamplePos[i] = inputTracks[i]->TimeToLongSamples(startTime);
|
|
}
|
|
mTimeTrack = timeTrack;
|
|
mT0 = startTime;
|
|
mT1 = stopTime;
|
|
mTime = startTime;
|
|
mNumChannels = numOutChannels;
|
|
mBufferSize = outBufferSize;
|
|
mInterleaved = outInterleaved;
|
|
mRate = outRate;
|
|
mFormat = outFormat;
|
|
mApplyTrackGains = true;
|
|
mGains = new float[mNumChannels];
|
|
if( mixerSpec && mixerSpec->GetNumChannels() == mNumChannels &&
|
|
mixerSpec->GetNumTracks() == mNumInputTracks )
|
|
mMixerSpec = mixerSpec;
|
|
else
|
|
mMixerSpec = NULL;
|
|
|
|
if (mInterleaved) {
|
|
mNumBuffers = 1;
|
|
mInterleavedBufferSize = mBufferSize * mNumChannels;
|
|
}
|
|
else {
|
|
mNumBuffers = mNumChannels;
|
|
mInterleavedBufferSize = mBufferSize;
|
|
}
|
|
|
|
mBuffer = new samplePtr[mNumBuffers];
|
|
mTemp = new samplePtr[mNumBuffers];
|
|
for (int c = 0; c < mNumBuffers; c++) {
|
|
mBuffer[c] = NewSamples(mInterleavedBufferSize, mFormat);
|
|
mTemp[c] = NewSamples(mInterleavedBufferSize, floatSample);
|
|
}
|
|
mFloatBuffer = new float[mInterleavedBufferSize];
|
|
|
|
mQueueMaxLen = 65536;
|
|
mProcessLen = 1024;
|
|
|
|
mQueueStart = new int[mNumInputTracks];
|
|
mQueueLen = new int[mNumInputTracks];
|
|
mSampleQueue = new float *[mNumInputTracks];
|
|
mResample = new Resample*[mNumInputTracks];
|
|
for(i=0; i<mNumInputTracks; i++) {
|
|
double factor = (mRate / mInputTrack[i]->GetRate());
|
|
if (timeTrack) {
|
|
// variable rate resampling
|
|
mResample[i] = new Resample(mHighQuality,
|
|
factor / timeTrack->GetRangeUpper(),
|
|
factor / timeTrack->GetRangeLower());
|
|
} else {
|
|
mResample[i] = new Resample(mHighQuality, factor, factor); // constant rate resampling
|
|
}
|
|
mSampleQueue[i] = new float[mQueueMaxLen];
|
|
mQueueStart[i] = 0;
|
|
mQueueLen[i] = 0;
|
|
}
|
|
|
|
int envLen = mInterleavedBufferSize;
|
|
if (mQueueMaxLen > envLen)
|
|
envLen = mQueueMaxLen;
|
|
mEnvValues = new double[envLen];
|
|
}
|
|
|
|
Mixer::~Mixer()
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mNumBuffers; i++) {
|
|
DeleteSamples(mBuffer[i]);
|
|
DeleteSamples(mTemp[i]);
|
|
}
|
|
delete[] mBuffer;
|
|
delete[] mTemp;
|
|
delete[] mInputTrack;
|
|
delete[] mEnvValues;
|
|
delete[] mFloatBuffer;
|
|
delete[] mGains;
|
|
delete[] mSamplePos;
|
|
|
|
for(i=0; i<mNumInputTracks; i++) {
|
|
delete mResample[i];
|
|
delete[] mSampleQueue[i];
|
|
}
|
|
delete[] mResample;
|
|
delete[] mSampleQueue;
|
|
delete[] mQueueStart;
|
|
delete[] mQueueLen;
|
|
}
|
|
|
|
void Mixer::ApplyTrackGains(bool apply)
|
|
{
|
|
mApplyTrackGains = apply;
|
|
}
|
|
|
|
void Mixer::Clear()
|
|
{
|
|
for (int c = 0; c < mNumBuffers; c++) {
|
|
memset(mTemp[c], 0, mInterleavedBufferSize * SAMPLE_SIZE(floatSample));
|
|
}
|
|
}
|
|
|
|
void MixBuffers(int numChannels, int *channelFlags, float *gains,
|
|
samplePtr src, samplePtr *dests,
|
|
int len, bool interleaved)
|
|
{
|
|
for (int c = 0; c < numChannels; c++) {
|
|
if (!channelFlags[c])
|
|
continue;
|
|
|
|
samplePtr destPtr;
|
|
int skip;
|
|
|
|
if (interleaved) {
|
|
destPtr = dests[0] + c*SAMPLE_SIZE(floatSample);
|
|
skip = numChannels;
|
|
} else {
|
|
destPtr = dests[c];
|
|
skip = 1;
|
|
}
|
|
|
|
float gain = gains[c];
|
|
float *dest = (float *)destPtr;
|
|
float *temp = (float *)src;
|
|
for (int j = 0; j < len; j++) {
|
|
*dest += temp[j] * gain; // the actual mixing process
|
|
dest += skip;
|
|
}
|
|
}
|
|
}
|
|
|
|
sampleCount Mixer::MixVariableRates(int *channelFlags, WaveTrack *track,
|
|
sampleCount *pos, float *queue,
|
|
int *queueStart, int *queueLen,
|
|
Resample * pResample)
|
|
{
|
|
double trackRate = track->GetRate();
|
|
double initialWarp = mRate / trackRate;
|
|
double tstep = 1.0 / trackRate;
|
|
double t = (*pos - *queueLen) / trackRate;
|
|
int sampleSize = SAMPLE_SIZE(floatSample);
|
|
|
|
sampleCount out = 0;
|
|
|
|
/* time is floating point. Sample rate is integer. The number of samples
|
|
* has to be integer, but the multiplication gives a float result, which we
|
|
* round to get an integer result. TODO: is this always right or can it be
|
|
* off by one sometimes? Can we not get this information directly from the
|
|
* clip (which must know) rather than convert the time?
|
|
*
|
|
* LLL: Not at this time. While WaveClips provide methods to retrieve the
|
|
* start and end sample, they do the same float->sampleCount conversion
|
|
* to calculate the position.
|
|
*/
|
|
|
|
// Find the last sample
|
|
sampleCount endPos;
|
|
double endTime = track->GetEndTime();
|
|
if (endTime > mT1) {
|
|
endPos = track->TimeToLongSamples(mT1);
|
|
}
|
|
else {
|
|
endPos = track->TimeToLongSamples(endTime);
|
|
}
|
|
|
|
while (out < mMaxOut) {
|
|
if (*queueLen < mProcessLen) {
|
|
memmove(queue, &queue[*queueStart], (*queueLen) * sampleSize);
|
|
*queueStart = 0;
|
|
|
|
int getLen = mQueueMaxLen - *queueLen;
|
|
|
|
// Constrain
|
|
if (*pos + getLen > endPos) {
|
|
getLen = endPos - *pos;
|
|
}
|
|
|
|
// Nothing to do if past end of track
|
|
if (getLen > 0) {
|
|
track->Get((samplePtr)&queue[*queueLen],
|
|
floatSample,
|
|
*pos,
|
|
getLen);
|
|
|
|
track->GetEnvelopeValues(mEnvValues,
|
|
getLen,
|
|
(*pos) / trackRate,
|
|
tstep);
|
|
|
|
for (int i = 0; i < getLen; i++) {
|
|
queue[(*queueLen) + i] *= mEnvValues[i];
|
|
}
|
|
|
|
*queueLen += getLen;
|
|
*pos += getLen;
|
|
}
|
|
}
|
|
|
|
sampleCount thisProcessLen = mProcessLen;
|
|
bool last = (*queueLen < mProcessLen);
|
|
if (last) {
|
|
thisProcessLen = *queueLen;
|
|
}
|
|
|
|
double factor = initialWarp;
|
|
if (mTimeTrack)
|
|
{
|
|
//TODO-MB: The end time is wrong when the resampler doesn't use all input samples,
|
|
// as a result of this the warp factor may be slightly wrong, so AudioIO will stop too soon
|
|
// or too late (resulting in missing sound or inserted silence). This can't be fixed
|
|
// without changing the way the resampler works, because the number of input samples that will be used
|
|
// is unpredictable. Maybe it can be compensated lated though.
|
|
factor *= mTimeTrack->ComputeWarpFactor(t, t + (double)thisProcessLen / trackRate);
|
|
}
|
|
|
|
int input_used;
|
|
int outgen = pResample->Process(factor,
|
|
&queue[*queueStart],
|
|
thisProcessLen,
|
|
last,
|
|
&input_used,
|
|
&mFloatBuffer[out],
|
|
mMaxOut - out);
|
|
|
|
if (outgen < 0) {
|
|
return 0;
|
|
}
|
|
|
|
*queueStart += input_used;
|
|
*queueLen -= input_used;
|
|
out += outgen;
|
|
t += (input_used / trackRate);
|
|
|
|
if (last) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < mNumChannels; c++) {
|
|
if (mApplyTrackGains) {
|
|
mGains[c] = track->GetChannelGain(c);
|
|
}
|
|
else {
|
|
mGains[c] = 1.0;
|
|
}
|
|
}
|
|
|
|
MixBuffers(mNumChannels,
|
|
channelFlags,
|
|
mGains,
|
|
(samplePtr)mFloatBuffer,
|
|
mTemp,
|
|
out,
|
|
mInterleaved);
|
|
|
|
return out;
|
|
}
|
|
|
|
sampleCount Mixer::MixSameRate(int *channelFlags, WaveTrack *track,
|
|
sampleCount *pos)
|
|
{
|
|
int slen = mMaxOut;
|
|
int c;
|
|
double t = *pos / track->GetRate();
|
|
double trackEndTime = track->GetEndTime();
|
|
double tEnd = trackEndTime > mT1 ? mT1 : trackEndTime;
|
|
|
|
//don't process if we're at the end of the selection or track.
|
|
if (t>=tEnd)
|
|
return 0;
|
|
//if we're about to approach the end of the track or selection, figure out how much we need to grab
|
|
if (t + slen/track->GetRate() > tEnd)
|
|
slen = (int)((tEnd - t) * track->GetRate() + 0.5);
|
|
|
|
if (slen > mMaxOut)
|
|
slen = mMaxOut;
|
|
|
|
track->Get((samplePtr)mFloatBuffer, floatSample, *pos, slen);
|
|
track->GetEnvelopeValues(mEnvValues, slen, t, 1.0 / mRate);
|
|
for(int i=0; i<slen; i++)
|
|
mFloatBuffer[i] *= mEnvValues[i]; // Track gain control will go here?
|
|
|
|
for(c=0; c<mNumChannels; c++)
|
|
if (mApplyTrackGains)
|
|
mGains[c] = track->GetChannelGain(c);
|
|
else
|
|
mGains[c] = 1.0;
|
|
|
|
MixBuffers(mNumChannels, channelFlags, mGains,
|
|
(samplePtr)mFloatBuffer, mTemp, slen, mInterleaved);
|
|
|
|
*pos += slen;
|
|
|
|
return slen;
|
|
}
|
|
|
|
sampleCount Mixer::Process(sampleCount maxToProcess)
|
|
{
|
|
// MB: this is wrong! mT represented warped time, and mTime is too inaccurate to use
|
|
// it here. It's also unnecessary I think.
|
|
//if (mT >= mT1)
|
|
// return 0;
|
|
|
|
int i, j;
|
|
sampleCount out;
|
|
sampleCount maxOut = 0;
|
|
int *channelFlags = new int[mNumChannels];
|
|
|
|
mMaxOut = maxToProcess;
|
|
|
|
Clear();
|
|
for(i=0; i<mNumInputTracks; i++) {
|
|
WaveTrack *track = mInputTrack[i];
|
|
for(j=0; j<mNumChannels; j++)
|
|
channelFlags[j] = 0;
|
|
|
|
if( mMixerSpec ) {
|
|
//ignore left and right when downmixing is not required
|
|
for( j = 0; j < mNumChannels; j++ )
|
|
channelFlags[ j ] = mMixerSpec->mMap[ i ][ j ] ? 1 : 0;
|
|
}
|
|
else {
|
|
switch(track->GetChannel()) {
|
|
case Track::MonoChannel:
|
|
default:
|
|
for(j=0; j<mNumChannels; j++)
|
|
channelFlags[j] = 1;
|
|
break;
|
|
case Track::LeftChannel:
|
|
channelFlags[0] = 1;
|
|
break;
|
|
case Track::RightChannel:
|
|
if (mNumChannels >= 2)
|
|
channelFlags[1] = 1;
|
|
else
|
|
channelFlags[0] = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mTimeTrack || track->GetRate() != mRate)
|
|
out = MixVariableRates(channelFlags, track,
|
|
&mSamplePos[i], mSampleQueue[i],
|
|
&mQueueStart[i], &mQueueLen[i], mResample[i]);
|
|
else
|
|
out = MixSameRate(channelFlags, track, &mSamplePos[i]);
|
|
|
|
if (out > maxOut)
|
|
maxOut = out;
|
|
|
|
double t = (double)mSamplePos[i] / (double)track->GetRate();
|
|
if(t > mTime)
|
|
mTime = std::min(t, mT1);
|
|
|
|
}
|
|
if(mInterleaved) {
|
|
for(int c=0; c<mNumChannels; c++) {
|
|
CopySamples(mTemp[0] + (c * SAMPLE_SIZE(floatSample)),
|
|
floatSample,
|
|
mBuffer[0] + (c * SAMPLE_SIZE(mFormat)),
|
|
mFormat,
|
|
maxOut,
|
|
mHighQuality,
|
|
mNumChannels,
|
|
mNumChannels);
|
|
}
|
|
}
|
|
else {
|
|
for(int c=0; c<mNumBuffers; c++) {
|
|
CopySamples(mTemp[c],
|
|
floatSample,
|
|
mBuffer[c],
|
|
mFormat,
|
|
maxOut,
|
|
mHighQuality);
|
|
}
|
|
}
|
|
// MB: this doesn't take warping into account, replaced with code based on mSamplePos
|
|
//mT += (maxOut / mRate);
|
|
|
|
delete [] channelFlags;
|
|
|
|
return maxOut;
|
|
}
|
|
|
|
samplePtr Mixer::GetBuffer()
|
|
{
|
|
return mBuffer[0];
|
|
}
|
|
|
|
samplePtr Mixer::GetBuffer(int channel)
|
|
{
|
|
return mBuffer[channel];
|
|
}
|
|
|
|
double Mixer::MixGetCurrentTime()
|
|
{
|
|
return mTime;
|
|
}
|
|
|
|
void Mixer::Restart()
|
|
{
|
|
int i;
|
|
|
|
mTime = mT0;
|
|
|
|
for(i=0; i<mNumInputTracks; i++)
|
|
mSamplePos[i] = mInputTrack[i]->TimeToLongSamples(mT0);
|
|
|
|
for(i=0; i<mNumInputTracks; i++) {
|
|
mQueueStart[i] = 0;
|
|
mQueueLen[i] = 0;
|
|
}
|
|
}
|
|
|
|
void Mixer::Reposition(double t)
|
|
{
|
|
int i;
|
|
|
|
mTime = t;
|
|
if( mTime < mT0 )
|
|
mTime = mT0;
|
|
if( mTime > mT1 )
|
|
mTime = mT1;
|
|
|
|
for(i=0; i<mNumInputTracks; i++) {
|
|
mSamplePos[i] = mInputTrack[i]->TimeToLongSamples(mTime);
|
|
mQueueStart[i] = 0;
|
|
mQueueLen[i] = 0;
|
|
}
|
|
}
|
|
|
|
MixerSpec::MixerSpec( int numTracks, int maxNumChannels )
|
|
{
|
|
mNumTracks = mNumChannels = numTracks;
|
|
mMaxNumChannels = maxNumChannels;
|
|
|
|
if( mNumChannels > mMaxNumChannels )
|
|
mNumChannels = mMaxNumChannels;
|
|
|
|
Alloc();
|
|
|
|
for( int i = 0; i < mNumTracks; i++ )
|
|
for( int j = 0; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = ( i == j );
|
|
}
|
|
|
|
MixerSpec::MixerSpec( const MixerSpec &mixerSpec )
|
|
{
|
|
mNumTracks = mixerSpec.mNumTracks;
|
|
mMaxNumChannels = mixerSpec.mMaxNumChannels;
|
|
mNumChannels = mixerSpec.mNumChannels;
|
|
|
|
Alloc();
|
|
|
|
for( int i = 0; i < mNumTracks; i++ )
|
|
for( int j = 0; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = mixerSpec.mMap[ i ][ j ];
|
|
}
|
|
|
|
void MixerSpec::Alloc()
|
|
{
|
|
mMap = new bool*[ mNumTracks ];
|
|
for( int i = 0; i < mNumTracks; i++ )
|
|
mMap[ i ] = new bool[ mMaxNumChannels ];
|
|
}
|
|
|
|
MixerSpec::~MixerSpec()
|
|
{
|
|
Free();
|
|
}
|
|
|
|
void MixerSpec::Free()
|
|
{
|
|
for( int i = 0; i < mNumTracks; i++ )
|
|
delete[] mMap[ i ];
|
|
|
|
delete[] mMap;
|
|
}
|
|
|
|
bool MixerSpec::SetNumChannels( int newNumChannels )
|
|
{
|
|
if( mNumChannels == newNumChannels )
|
|
return true;
|
|
|
|
if( newNumChannels > mMaxNumChannels )
|
|
return false;
|
|
|
|
for( int i = 0; i < mNumTracks; i++ )
|
|
{
|
|
for( int j = newNumChannels; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = false;
|
|
|
|
for( int j = mNumChannels; j < newNumChannels; j++ )
|
|
mMap[ i ][ j ] = false;
|
|
}
|
|
|
|
mNumChannels = newNumChannels;
|
|
return true;
|
|
}
|
|
|
|
MixerSpec& MixerSpec::operator=( const MixerSpec &mixerSpec )
|
|
{
|
|
Free();
|
|
|
|
mNumTracks = mixerSpec.mNumTracks;
|
|
mNumChannels = mixerSpec.mNumChannels;
|
|
mMaxNumChannels = mixerSpec.mMaxNumChannels;
|
|
|
|
Alloc();
|
|
|
|
for( int i = 0; i < mNumTracks; i++ )
|
|
for( int j = 0; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = mixerSpec.mMap[ i ][ j ];
|
|
|
|
return *this;
|
|
}
|
|
|