1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-07-20 14:47:49 +02:00
2010-01-24 09:19:39 +00:00

202 lines
5.4 KiB
C++

/***************************************************/
/*! \class Flute
\brief STK flute physical model class.
This class implements a simple flute
physical model, as discussed by Karjalainen,
Smith, Waryznyk, etc. The jet model uses
a polynomial, a la Cook.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Jet Delay = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2005.
*/
/***************************************************/
#include "Flute.h"
#include "SKINI.msg"
using namespace Nyq;
Flute :: Flute(StkFloat lowestFrequency)
{
length_ = (unsigned long) (Stk::sampleRate() / lowestFrequency + 1);
boreDelay_.setMaximumDelay( length_ );
boreDelay_.setDelay( 100.0 );
length_ >>= 1;
jetDelay_.setMaximumDelay( length_ );
jetDelay_.setDelay( 49.0 );
vibrato_.setFrequency( 5.925 );
this->clear();
filter_.setPole( 0.7 - ((StkFloat) 0.1 * 22050.0 / Stk::sampleRate() ) );
filter_.setGain( -1.0 );
dcBlock_.setBlockZero();
adsr_.setAllTimes( 0.005, 0.01, 0.8, 0.010);
endReflection_ = 0.5;
jetReflection_ = 0.5;
noiseGain_ = 0.15; // Breath pressure random component.
vibratoGain_ = 0.05; // Breath periodic vibrato component.
jetRatio_ = 0.32;
maxPressure_ = 0.0;
lastFrequency_ = 220.0;
}
Flute :: ~Flute()
{
}
void Flute :: clear()
{
jetDelay_.clear();
boreDelay_.clear();
filter_.clear();
dcBlock_.clear();
}
void Flute :: setFrequency(StkFloat frequency)
{
lastFrequency_ = frequency;
if ( frequency <= 0.0 ) {
errorString_ << "Flute::setFrequency: parameter is less than or equal to zero!";
handleError( StkError::WARNING );
lastFrequency_ = 220.0;
}
// We're overblowing here.
lastFrequency_ *= 0.66666;
// delay = length - approximate filter delay.
StkFloat delay = Stk::sampleRate() / lastFrequency_ - (StkFloat) 2.0;
if ( delay <= 0.0 ) delay = 0.3;
else if ( delay > length_ ) delay = length_;
boreDelay_.setDelay(delay);
jetDelay_.setDelay(delay * jetRatio_);
}
void Flute :: startBlowing(StkFloat amplitude, StkFloat rate)
{
adsr_.setAttackRate( rate );
maxPressure_ = amplitude / (StkFloat) 0.8;
adsr_.keyOn();
}
void Flute :: stopBlowing(StkFloat rate)
{
adsr_.setReleaseRate( rate );
adsr_.keyOff();
}
void Flute :: noteOn(StkFloat frequency, StkFloat amplitude)
{
this->setFrequency( frequency );
this->startBlowing( 1.1 + (amplitude * 0.20), amplitude * 0.02 );
outputGain_ = amplitude + 0.001;
#if defined(_STK_DEBUG_)
errorString_ << "Flute::NoteOn: frequency = " << frequency << ", amplitude = " << amplitude << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}
void Flute :: noteOff(StkFloat amplitude)
{
this->stopBlowing( amplitude * 0.02 );
#if defined(_STK_DEBUG_)
errorString_ << "Flute::NoteOff: amplitude = " << amplitude << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}
void Flute :: setJetReflection(StkFloat coefficient)
{
jetReflection_ = coefficient;
}
void Flute :: setEndReflection(StkFloat coefficient)
{
endReflection_ = coefficient;
}
void Flute :: setJetDelay(StkFloat aRatio)
{
// Delay = length - approximate filter delay.
StkFloat temp = Stk::sampleRate() / lastFrequency_ - (StkFloat) 2.0;
jetRatio_ = aRatio;
jetDelay_.setDelay(temp * aRatio); // Scaled by ratio.
}
StkFloat Flute :: computeSample()
{
StkFloat pressureDiff;
StkFloat breathPressure;
// Calculate the breath pressure (envelope + noise + vibrato)
breathPressure = maxPressure_ * adsr_.tick();
breathPressure += breathPressure * ( noiseGain_ * noise_.tick() + vibratoGain_ * vibrato_.tick() );
//breathPressure += breathPressure * vibratoGain_ * vibrato_.tick();
StkFloat temp = filter_.tick( boreDelay_.lastOut() );
temp = dcBlock_.tick( temp ); // Block DC on reflection.
pressureDiff = breathPressure - (jetReflection_ * temp);
pressureDiff = jetDelay_.tick( pressureDiff );
pressureDiff = jetTable_.tick( pressureDiff ) + (endReflection_ * temp);
lastOutput_ = (StkFloat) 0.3 * boreDelay_.tick( pressureDiff );
lastOutput_ *= outputGain_;
return lastOutput_;
}
void Flute :: controlChange(int number, StkFloat value)
{
StkFloat norm = value * ONE_OVER_128;
if ( norm < 0 ) {
norm = 0.0;
errorString_ << "Flute::controlChange: control value less than zero ... setting to zero!";
handleError( StkError::WARNING );
}
else if ( norm > 1.0 ) {
norm = 1.0;
errorString_ << "Flute::controlChange: control value greater than 128.0 ... setting to 128.0!";
handleError( StkError::WARNING );
}
if (number == __SK_JetDelay_) // 2
this->setJetDelay( (StkFloat) (0.08 + (0.48 * norm)) );
else if (number == __SK_NoiseLevel_) // 4
noiseGain_ = ( norm * 0.4);
else if (number == __SK_ModFrequency_) // 11
vibrato_.setFrequency( norm * 12.0);
else if (number == __SK_ModWheel_) // 1
vibratoGain_ = ( norm * 0.4 );
else if (number == __SK_AfterTouch_Cont_) // 128
adsr_.setTarget( norm );
else {
errorString_ << "Flute::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#if defined(_STK_DEBUG_)
errorString_ << "Flute::controlChange: number = " << number << ", value = " << value << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}