mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-01 16:19:43 +02:00
382 lines
11 KiB
C++
382 lines
11 KiB
C++
/*
|
|
* Program: REALFFTF.C
|
|
* Author: Philip Van Baren
|
|
* Date: 2 September 1993
|
|
*
|
|
* Description: These routines perform an FFT on real data to get a conjugate-symmetric
|
|
* output, and an inverse FFT on conjugate-symmetric input to get a real
|
|
* output sequence.
|
|
*
|
|
* This code is for floating point data.
|
|
*
|
|
* Modified 8/19/1998 by Philip Van Baren
|
|
* - made the InitializeFFT and EndFFT routines take a structure
|
|
* holding the length and pointers to the BitReversed and SinTable
|
|
* tables.
|
|
* Modified 5/23/2009 by Philip Van Baren
|
|
* - Added GetFFT and ReleaseFFT routines to retain common SinTable
|
|
* and BitReversed tables so they don't need to be reallocated
|
|
* and recomputed on every call.
|
|
* - Added Reorder* functions to undo the bit-reversal
|
|
*
|
|
* Copyright (C) 2009 Philip VanBaren
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "RealFFTf.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846 /* pi */
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the Sine table and Twiddle pointers (bit-reversed pointers)
|
|
* for the FFT routine.
|
|
*/
|
|
HFFT InitializeFFT(int fftlen)
|
|
{
|
|
int i;
|
|
int temp;
|
|
int mask;
|
|
HFFT h;
|
|
|
|
if((h=(HFFT)malloc(sizeof(FFTParam)))==NULL)
|
|
{
|
|
fprintf(stderr,"Error allocating memory for FFT\n");
|
|
exit(8);
|
|
}
|
|
/*
|
|
* FFT size is only half the number of data points
|
|
* The full FFT output can be reconstructed from this FFT's output.
|
|
* (This optimization can be made since the data is real.)
|
|
*/
|
|
h->Points = fftlen/2;
|
|
|
|
if((h->SinTable=(fft_type *)malloc(2*h->Points*sizeof(fft_type)))==NULL)
|
|
{
|
|
fprintf(stderr,"Error allocating memory for Sine table.\n");
|
|
exit(8);
|
|
}
|
|
if((h->BitReversed=(int *)malloc(h->Points*sizeof(int)))==NULL)
|
|
{
|
|
fprintf(stderr,"Error allocating memory for BitReversed.\n");
|
|
exit(8);
|
|
}
|
|
|
|
for(i=0;i<h->Points;i++)
|
|
{
|
|
temp=0;
|
|
for(mask=h->Points/2;mask>0;mask >>= 1)
|
|
temp=(temp >> 1) + (i&mask ? h->Points : 0);
|
|
|
|
h->BitReversed[i]=temp;
|
|
}
|
|
|
|
for(i=0;i<h->Points;i++)
|
|
{
|
|
h->SinTable[h->BitReversed[i] ]=(fft_type)-sin(2*M_PI*i/(2*h->Points));
|
|
h->SinTable[h->BitReversed[i]+1]=(fft_type)-cos(2*M_PI*i/(2*h->Points));
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/*
|
|
* Free up the memory allotted for Sin table and Twiddle Pointers
|
|
*/
|
|
void EndFFT(HFFT h)
|
|
{
|
|
if(h->Points>0) {
|
|
free(h->BitReversed);
|
|
free(h->SinTable);
|
|
}
|
|
h->Points=0;
|
|
free(h);
|
|
}
|
|
|
|
#define MAX_HFFT 10
|
|
static HFFT hFFTArray[MAX_HFFT] = { NULL };
|
|
static int nFFTLockCount[MAX_HFFT] = { 0 };
|
|
|
|
/* Get a handle to the FFT tables of the desired length */
|
|
/* This version keeps common tables rather than allocating a new table every time */
|
|
HFFT GetFFT(int fftlen)
|
|
{
|
|
int h,n = fftlen/2;
|
|
for(h=0; (h<MAX_HFFT) && (hFFTArray[h] != NULL) && (n != hFFTArray[h]->Points); h++);
|
|
if(h<MAX_HFFT) {
|
|
if(hFFTArray[h] == NULL) {
|
|
hFFTArray[h] = InitializeFFT(fftlen);
|
|
nFFTLockCount[h] = 0;
|
|
}
|
|
nFFTLockCount[h]++;
|
|
return hFFTArray[h];
|
|
} else {
|
|
// All buffers used, so fall back to allocating a new set of tables
|
|
return InitializeFFT(fftlen);;
|
|
}
|
|
}
|
|
|
|
/* Release a previously requested handle to the FFT tables */
|
|
void ReleaseFFT(HFFT hFFT)
|
|
{
|
|
int h;
|
|
for(h=0; (h<MAX_HFFT) && (hFFTArray[h] != hFFT); h++);
|
|
if(h<MAX_HFFT) {
|
|
nFFTLockCount[h]--;
|
|
} else {
|
|
EndFFT(hFFT);
|
|
}
|
|
}
|
|
|
|
/* Deallocate any unused FFT tables */
|
|
void CleanupFFT()
|
|
{
|
|
int h;
|
|
for(h=0; (h<MAX_HFFT); h++) {
|
|
if((nFFTLockCount[h] <= 0) && (hFFTArray[h] != NULL)) {
|
|
EndFFT(hFFTArray[h]);
|
|
hFFTArray[h] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Forward FFT routine. Must call InitializeFFT(fftlen) first!
|
|
*
|
|
* Note: Output is BIT-REVERSED! so you must use the BitReversed to
|
|
* get legible output, (i.e. Real_i = buffer[ h->BitReversed[i] ]
|
|
* Imag_i = buffer[ h->BitReversed[i]+1 ] )
|
|
* Input is in normal order.
|
|
*
|
|
* Output buffer[0] is the DC bin, and output buffer[1] is the Fs/2 bin
|
|
* - this can be done because both values will always be real only
|
|
* - this allows us to not have to allocate an extra complex value for the Fs/2 bin
|
|
*
|
|
* Note: The scaling on this is done according to the standard FFT definition,
|
|
* so a unit amplitude DC signal will output an amplitude of (N)
|
|
* (Older revisions would progressively scale the input, so the output
|
|
* values would be similar in amplitude to the input values, which is
|
|
* good when using fixed point arithmetic)
|
|
*/
|
|
void RealFFTf(fft_type *buffer,HFFT h)
|
|
{
|
|
fft_type *A,*B;
|
|
fft_type *sptr;
|
|
fft_type *endptr1,*endptr2;
|
|
int *br1,*br2;
|
|
fft_type HRplus,HRminus,HIplus,HIminus;
|
|
fft_type v1,v2,sin,cos;
|
|
|
|
int ButterfliesPerGroup=h->Points/2;
|
|
|
|
/*
|
|
* Butterfly:
|
|
* Ain-----Aout
|
|
* \ /
|
|
* / \
|
|
* Bin-----Bout
|
|
*/
|
|
|
|
endptr1=buffer+h->Points*2;
|
|
|
|
while(ButterfliesPerGroup>0)
|
|
{
|
|
A=buffer;
|
|
B=buffer+ButterfliesPerGroup*2;
|
|
sptr=h->SinTable;
|
|
|
|
while(A<endptr1)
|
|
{
|
|
sin=*sptr;
|
|
cos=*(sptr+1);
|
|
endptr2=B;
|
|
while(A<endptr2)
|
|
{
|
|
v1=*B*cos + *(B+1)*sin;
|
|
v2=*B*sin - *(B+1)*cos;
|
|
*B=(*A+v1);
|
|
*(A++)=*(B++)-2*v1;
|
|
*B=(*A-v2);
|
|
*(A++)=*(B++)+2*v2;
|
|
}
|
|
A=B;
|
|
B+=ButterfliesPerGroup*2;
|
|
sptr+=2;
|
|
}
|
|
ButterfliesPerGroup >>= 1;
|
|
}
|
|
/* Massage output to get the output for a real input sequence. */
|
|
br1=h->BitReversed+1;
|
|
br2=h->BitReversed+h->Points-1;
|
|
|
|
while(br1<br2)
|
|
{
|
|
sin=h->SinTable[*br1];
|
|
cos=h->SinTable[*br1+1];
|
|
A=buffer+*br1;
|
|
B=buffer+*br2;
|
|
HRplus = (HRminus = *A - *B ) + (*B * 2);
|
|
HIplus = (HIminus = *(A+1) - *(B+1)) + (*(B+1) * 2);
|
|
v1 = (sin*HRminus - cos*HIplus);
|
|
v2 = (cos*HRminus + sin*HIplus);
|
|
*A = (HRplus + v1) * (fft_type)0.5;
|
|
*B = *A - v1;
|
|
*(A+1) = (HIminus + v2) * (fft_type)0.5;
|
|
*(B+1) = *(A+1) - HIminus;
|
|
|
|
br1++;
|
|
br2--;
|
|
}
|
|
/* Handle the center bin (just need a conjugate) */
|
|
A=buffer+*br1+1;
|
|
*A=-*A;
|
|
/* Handle DC bin separately - and ignore the Fs/2 bin
|
|
buffer[0]+=buffer[1];
|
|
buffer[1]=(fft_type)0;*/
|
|
/* Handle DC and Fs/2 bins separately */
|
|
/* Put the Fs/2 value into the imaginary part of the DC bin */
|
|
v1=buffer[0]-buffer[1];
|
|
buffer[0]+=buffer[1];
|
|
buffer[1]=v1;
|
|
}
|
|
|
|
|
|
/* Description: This routine performs an inverse FFT to real data.
|
|
* This code is for floating point data.
|
|
*
|
|
* Note: Output is BIT-REVERSED! so you must use the BitReversed to
|
|
* get legible output, (i.e. wave[2*i] = buffer[ BitReversed[i] ]
|
|
* wave[2*i+1] = buffer[ BitReversed[i]+1 ] )
|
|
* Input is in normal order, interleaved (real,imaginary) complex data
|
|
* You must call InitializeFFT(fftlen) first to initialize some buffers!
|
|
*
|
|
* Input buffer[0] is the DC bin, and input buffer[1] is the Fs/2 bin
|
|
* - this can be done because both values will always be real only
|
|
* - this allows us to not have to allocate an extra complex value for the Fs/2 bin
|
|
*
|
|
* Note: The scaling on this is done according to the standard FFT definition,
|
|
* so a unit amplitude DC signal will output an amplitude of (N)
|
|
* (Older revisions would progressively scale the input, so the output
|
|
* values would be similar in amplitude to the input values, which is
|
|
* good when using fixed point arithmetic)
|
|
*/
|
|
void InverseRealFFTf(fft_type *buffer,HFFT h)
|
|
{
|
|
fft_type *A,*B;
|
|
fft_type *sptr;
|
|
fft_type *endptr1,*endptr2;
|
|
int *br1;
|
|
fft_type HRplus,HRminus,HIplus,HIminus;
|
|
fft_type v1,v2,sin,cos;
|
|
|
|
int ButterfliesPerGroup=h->Points/2;
|
|
|
|
/* Massage input to get the input for a real output sequence. */
|
|
A=buffer+2;
|
|
B=buffer+h->Points*2-2;
|
|
br1=h->BitReversed+1;
|
|
while(A<B)
|
|
{
|
|
sin=h->SinTable[*br1];
|
|
cos=h->SinTable[*br1+1];
|
|
HRplus = (HRminus = *A - *B ) + (*B * 2);
|
|
HIplus = (HIminus = *(A+1) - *(B+1)) + (*(B+1) * 2);
|
|
v1 = (sin*HRminus + cos*HIplus);
|
|
v2 = (cos*HRminus - sin*HIplus);
|
|
*A = (HRplus + v1) * (fft_type)0.5;
|
|
*B = *A - v1;
|
|
*(A+1) = (HIminus - v2) * (fft_type)0.5;
|
|
*(B+1) = *(A+1) - HIminus;
|
|
|
|
A+=2;
|
|
B-=2;
|
|
br1++;
|
|
}
|
|
/* Handle center bin (just need conjugate) */
|
|
*(A+1)=-*(A+1);
|
|
/* Handle DC bin separately - this ignores any Fs/2 component
|
|
buffer[1]=buffer[0]=buffer[0]/2;*/
|
|
/* Handle DC and Fs/2 bins specially */
|
|
/* The DC bin is passed in as the real part of the DC complex value */
|
|
/* The Fs/2 bin is passed in as the imaginary part of the DC complex value */
|
|
/* (v1+v2) = buffer[0] == the DC component */
|
|
/* (v1-v2) = buffer[1] == the Fs/2 component */
|
|
v1=0.5f*(buffer[0]+buffer[1]);
|
|
v2=0.5f*(buffer[0]-buffer[1]);
|
|
buffer[0]=v1;
|
|
buffer[1]=v2;
|
|
|
|
/*
|
|
* Butterfly:
|
|
* Ain-----Aout
|
|
* \ /
|
|
* / \
|
|
* Bin-----Bout
|
|
*/
|
|
|
|
endptr1=buffer+h->Points*2;
|
|
|
|
while(ButterfliesPerGroup>0)
|
|
{
|
|
A=buffer;
|
|
B=buffer+ButterfliesPerGroup*2;
|
|
sptr=h->SinTable;
|
|
|
|
while(A<endptr1)
|
|
{
|
|
sin=*(sptr++);
|
|
cos=*(sptr++);
|
|
endptr2=B;
|
|
while(A<endptr2)
|
|
{
|
|
v1=*B*cos - *(B+1)*sin;
|
|
v2=*B*sin + *(B+1)*cos;
|
|
*B=(*A+v1)*(fft_type)0.5;
|
|
*(A++)=*(B++)-v1;
|
|
*B=(*A+v2)*(fft_type)0.5;
|
|
*(A++)=*(B++)-v2;
|
|
}
|
|
A=B;
|
|
B+=ButterfliesPerGroup*2;
|
|
}
|
|
ButterfliesPerGroup >>= 1;
|
|
}
|
|
}
|
|
|
|
void ReorderToFreq(HFFT hFFT, fft_type *buffer, fft_type *RealOut, fft_type *ImagOut)
|
|
{
|
|
// Copy the data into the real and imaginary outputs
|
|
for(int i=1;i<hFFT->Points;i++) {
|
|
RealOut[i]=buffer[hFFT->BitReversed[i] ];
|
|
ImagOut[i]=buffer[hFFT->BitReversed[i]+1];
|
|
}
|
|
RealOut[0] = buffer[0]; // DC component
|
|
ImagOut[0] = 0;
|
|
RealOut[hFFT->Points] = buffer[1]; // Fs/2 component
|
|
ImagOut[hFFT->Points] = 0;
|
|
}
|
|
|
|
void ReorderToTime(HFFT hFFT, fft_type *buffer, fft_type *TimeOut)
|
|
{
|
|
// Copy the data into the real outputs
|
|
for(int i=0;i<hFFT->Points;i++) {
|
|
TimeOut[i*2 ]=buffer[hFFT->BitReversed[i] ];
|
|
TimeOut[i*2+1]=buffer[hFFT->BitReversed[i]+1];
|
|
}
|
|
} |