1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-02 08:39:46 +02:00
audacity/lib-src/libnyquist/revert-convolve.patch
2015-05-04 12:42:27 -05:00

367 lines
13 KiB
Diff

--- orig/nyquist/nyqsrc/convolve.c 2015-05-04 12:41:01.497976900 -0500
+++ nyquist/nyqsrc/convolve.c 2015-05-04 12:40:32.047737200 -0500
@@ -6,34 +6,6 @@
* of the first parameter.
*/
-/* Original convolve.c modified to do fast convolution. Here are some
- * notes:
- * The first arg is arbitrary length. The second arg is the impulse
- * response, which is converted into a table. Tables have limited maximum
- * size, which is good because we're going to use a single FFT for the
- * whole impulse response.
- *
- * The fast convolution works like this:
- * inputs are x_snd and h_snd.
- * Make h_snd into a table ht of size N, where N is a power of 2.
- * Copy ht with zero fill into H of size 2N.
- * Compute FFT of H in place.
- * Iterate:
- * Copy N samples of x_snd into X and zero fill to size 2N.
- * Compute FFT of X in place.
- * Multiply X by H (result goes into X).
- * Compute IFFT of X in place
- * Add X to R.
- * Now N samples of R can be output.
- * Copy 2nd half of R to first half and zero the 2nd half.
- * (this is actually done first, and the first time does
- * nothing because R is initially filled with zeros)
- *
- * Length of output is length of x input + length of h
- */
-
-#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
-#include <math.h>
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
@@ -43,8 +15,6 @@
#include "falloc.h"
#include "cext.h"
-#include "fftlib.h"
-#include "fftext.h"
#include "convolve.h"
void convolve_free();
@@ -58,13 +28,13 @@
long x_snd_cnt;
sample_block_values_type x_snd_ptr;
- sample_type *H; // the FFT of h_snd
- int h_len; // true length of H
- int N; // length of block, FFTs are of size 2*N
- int M; // log2 of 2*N, the FFT size
- sample_type *X;
- sample_type *R; // result buffer where output is summed
- sample_type *R_current;
+ table_type table;
+ sample_type *h_buf;
+ double length_of_h;
+ long h_len;
+ long x_buf_len;
+ sample_type *x_buffer_pointer;
+ sample_type *x_buffer_current;
} convolve_susp_node, *convolve_susp_type;
@@ -82,9 +52,8 @@
}
-void convolve_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
+void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list)
{
- convolve_susp_type susp = (convolve_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
@@ -93,9 +62,13 @@
register sample_block_values_type out_ptr_reg;
- sample_type *R = susp->R;
- sample_type *R_current;
- int N = susp->N;
+ register sample_type * h_buf_reg;
+ register long h_len_reg;
+ register long x_buf_len_reg;
+ register sample_type * x_buffer_pointer_reg;
+ register sample_type * x_buffer_current_reg;
+ register sample_type x_snd_scale_reg = susp->x_snd->scale;
+ register sample_block_values_type x_snd_ptr_reg;
falloc_sample_block(out, "convolve_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
@@ -104,60 +77,43 @@
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
- /* if we need output samples, generate them here */
- if (susp->R_current >= R + N) {
- /* Copy N samples of x_snd into X and zero fill to size 2N */
- int i = 0;
- sample_type *X = susp->X;
- sample_type *H = susp->H;
- int to_copy;
- while (i < N) {
+
+ /* don't run past the x_snd input sample block: */
+ /* based on susp_check_term_log_samples, but offset by h_len */
+
+ /* THIS IS EXPANDED BELOW
+ * susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt);
+ */
if (susp->x_snd_cnt == 0) {
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
+
+ /* THIS IS EXPANDED BELOW
+ *logical_stop_test(x_snd, susp->x_snd_cnt);
+ */
if (susp->x_snd->logical_stop_cnt ==
susp->x_snd->current - susp->x_snd_cnt) {
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt);
}
- }
+
+ /* THIS IS EXPANDED BELOW
+ * terminate_test(x_snd_ptr, x_snd, susp->x_snd_cnt);
+ */
if (susp->x_snd_ptr == zero_block->samples) {
+ /* ### modify this to terminate at an offset of (susp->h_len) */
+ /* Note: in the min_cnt function, susp->x_snd_cnt is *subtracted*
+ * from susp->x_snd->current to form the terminate time, so to
+ * increase the time, we need to *subtract* susp->h_len, which
+ * due to the double negative, *adds* susp->h_len to the ultimate
+ * terminate time calculation.
+ */
min_cnt(&susp->terminate_cnt, susp->x_snd,
- (snd_susp_type) susp, susp->x_snd_cnt);
- /* extend the output to include impulse response */
- susp->terminate_cnt += susp->h_len;
+ (snd_susp_type) susp, susp->x_snd_cnt - susp->h_len);
}
- /* copy no more than the remaining space and no more than
- * the amount remaining in the block
- */
- to_copy = min(N - i, susp->x_snd_cnt);
- memcpy(X + i, susp->x_snd_ptr,
- to_copy * sizeof(*susp->x_snd_ptr));
- susp->x_snd_ptr += to_copy;
- susp->x_snd_cnt -= to_copy;
- i += to_copy;
- }
- /* zero fill to size 2N */
- memset(X + N, 0, N * sizeof(X[0]));
- /* Compute FFT of X in place */
- fftInit(susp->M);
- rffts(X, susp->M, 1);
- /* Multiply X by H (result goes into X) */
- rspectprod(X, H, X, N * 2);
- /* Compute IFFT of X in place */
- riffts(X, susp->M, 1);
- /* Shift R, zero fill, add X, all in one loop */
- for (i = 0; i < N; i++) {
- R[i] = R[i + N] + X[i];
- R[i + N] = X[i + N];
- }
- /* now N samples of R can be output */
- susp->R_current = R;
- }
- /* compute togo, the number of samples to "compute" */
- /* can't use more than what's left in R. R_current is
- the next sample of R, so what's left is N - (R - R_current) */
- R_current = susp->R_current;
- togo = min(togo, N - (R_current - R));
+ }
+
+
+ togo = min(togo, susp->x_snd_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
@@ -166,23 +122,69 @@
if (togo == 0) break;
}
+
/* don't run past logical stop time */
- if (!susp->logically_stopped &&
- susp->susp.log_stop_cnt != UNKNOWN &&
- susp->susp.log_stop_cnt <= susp->susp.current + cnt + togo) {
- togo = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
- if (togo == 0) break;
+ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
+ int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
+ /* break if to_stop == 0 (we're at the logical stop)
+ * AND cnt > 0 (we're not at the beginning of the
+ * output block).
+ */
+ if (to_stop < togo) {
+ if (to_stop == 0) {
+ if (cnt) {
+ togo = 0;
+ break;
+ } else /* keep togo as is: since cnt == 0, we
+ * can set the logical stop flag on this
+ * output block
+ */
+ susp->logically_stopped = true;
+ } else /* limit togo so we can start a new
+ * block at the LST
+ */
+ togo = to_stop;
+ }
}
n = togo;
+ h_buf_reg = susp->h_buf;
+ h_len_reg = susp->h_len;
+ x_buf_len_reg = susp->x_buf_len;
+ x_buffer_pointer_reg = susp->x_buffer_pointer;
+ x_buffer_current_reg = susp->x_buffer_current;
+ x_snd_ptr_reg = susp->x_snd_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
- *out_ptr_reg++ = (sample_type) *R_current++;
+ long i; double sum;
+ /* see if we've reached end of x_buffer */
+ if ((x_buffer_pointer_reg + x_buf_len_reg) <= (x_buffer_current_reg + h_len_reg)) {
+ /* shift x_buffer from current back to base */
+ for (i = 1; i < h_len_reg; i++) {
+ x_buffer_pointer_reg[i-1] = x_buffer_current_reg[i];
+ }
+ /* this will be incremented back to x_buffer_pointer_reg below */
+ x_buffer_current_reg = x_buffer_pointer_reg - 1;
+ }
+
+ x_buffer_current_reg++;
+
+ x_buffer_current_reg[h_len_reg - 1] = (x_snd_scale_reg * *x_snd_ptr_reg++);
+
+ sum = 0.0;
+ for (i = 0; i < h_len_reg; i++) {
+ sum += x_buffer_current_reg[i] * h_buf_reg[i];
+ }
+
+ *out_ptr_reg++ = (sample_type) sum;
} while (--n); /* inner loop */
- /* using R_current is a bad idea on RS/6000: */
- susp->R_current += togo;
+ susp->x_buffer_pointer = x_buffer_pointer_reg;
+ susp->x_buffer_current = x_buffer_current_reg;
+ /* using x_snd_ptr_reg is a bad idea on RS/6000: */
+ susp->x_snd_ptr += togo;
out_ptr += togo;
+ susp_took(x_snd_cnt, togo);
cnt += togo;
} /* outer loop */
@@ -202,9 +204,10 @@
} /* convolve_s_fetch */
-void convolve_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
+void convolve_toss_fetch(susp, snd_list)
+ register convolve_susp_type susp;
+ snd_list_type snd_list;
{
- convolve_susp_type susp = (convolve_susp_type) susp;
time_type final_time = susp->susp.t0;
long n;
@@ -219,36 +222,32 @@
susp->x_snd_ptr += n;
susp_took(x_snd_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
- (*(susp->susp.fetch))(a_susp, snd_list);
+ (*(susp->susp.fetch))(susp, snd_list);
}
-void convolve_mark(snd_susp_type a_susp)
+void convolve_mark(convolve_susp_type susp)
{
- convolve_susp_type susp = (convolve_susp_type) a_susp;
sound_xlmark(susp->x_snd);
}
-void convolve_free(snd_susp_type a_susp)
+void convolve_free(convolve_susp_type susp)
{
- convolve_susp_type susp = (convolve_susp_type) a_susp;
- free(susp->R);
- free(susp->X);
- free(susp->H);
- sound_unref(susp->x_snd);
+ table_unref(susp->table);
+ free(susp->x_buffer_pointer); sound_unref(susp->x_snd);
ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
}
-void convolve_print_tree(snd_susp_type a_susp, int n)
+void convolve_print_tree(convolve_susp_type susp, int n)
{
- convolve_susp_type susp = (convolve_susp_type) a_susp;
indent(n);
stdputstr("x_snd:");
sound_print_tree_1(susp->x_snd, n);
}
+
sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
{
register convolve_susp_type susp;
@@ -256,38 +255,16 @@
time_type t0 = x_snd->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
- table_type table;
- double log_len;
falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
- table = sound_to_table(h_snd);
- susp->h_len = table->length;
- log_len = log(table->length) / M_LN2; /* compute log-base-2(length) */
- susp->M = (int) log_len;
- if (susp->M != log_len) susp->M++; /* round up */
- susp->N = 1 << susp->M; /* size of data blocks */
- susp->M++; /* M = log2(2 * N) */
- susp->H = (sample_type *) calloc(2 * susp->N, sizeof(susp->H[0]));
- if (!susp->H) {
- xlabort("memory allocation failure in convolve");
- }
- memcpy(susp->H, table->samples, sizeof(susp->H[0]) * susp->N);
- table_unref(table); /* don't need table now */
- /* remaining N samples are already zero-filled */
- if (fftInit(susp->M)) {
- free(susp->H);
- xlabort("fft initialization error in convolve");
- }
- rffts(susp->H, susp->M, 1);
- susp->X = (sample_type *) calloc(2 * susp->N, sizeof(susp->X[0]));
- susp->R = (sample_type *) calloc(2 * susp->N, sizeof(susp->R[0]));
- if (!susp->X || !susp->R) {
- free(susp->H);
- if (susp->X) free(susp->X);
- if (susp->R) free(susp->R);
- xlabort("memory allocation failed in convolve");
- }
- susp->R_current = susp->R + susp->N;
- susp->susp.fetch = &convolve_s_fetch;
+ susp->table = sound_to_table(h_snd);
+ susp->h_buf = susp->table->samples;
+ susp->length_of_h = susp->table->length;
+ susp->h_len = (long) susp->length_of_h;
+ h_reverse(susp->h_buf, susp->h_len);
+ susp->x_buf_len = 2 * susp->h_len;
+ susp->x_buffer_pointer = calloc((2 * (susp->h_len)), sizeof(float));
+ susp->x_buffer_current = susp->x_buffer_pointer;
+ susp->susp.fetch = convolve_s_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);