1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-03 17:19:43 +02:00
2015-04-07 22:10:17 -05:00

1085 lines
36 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "tapf.h"
void tapf_free(snd_susp_type a_susp);
typedef struct tapf_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type s1;
long s1_cnt;
sample_block_values_type s1_ptr;
sound_type vardelay;
long vardelay_cnt;
sample_block_values_type vardelay_ptr;
/* support for interpolation of vardelay */
sample_type vardelay_x1_sample;
double vardelay_pHaSe;
double vardelay_pHaSe_iNcR;
/* support for ramp between samples of vardelay */
double output_per_vardelay;
long vardelay_n;
double offset;
double vdscale;
long maxdelay;
long bufflen;
long index;
sample_type *buffer;
} tapf_susp_node, *tapf_susp_type;
void tapf_nn_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double offset_reg;
register double vdscale_reg;
register long maxdelay_reg;
register long bufflen_reg;
register long index_reg;
register sample_type * buffer_reg;
register sample_block_values_type vardelay_ptr_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "tapf_nn_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past the vardelay input sample block: */
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
togo = min(togo, susp->vardelay_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
offset_reg = susp->offset;
vdscale_reg = susp->vdscale;
maxdelay_reg = susp->maxdelay;
bufflen_reg = susp->bufflen;
index_reg = susp->index;
buffer_reg = susp->buffer;
vardelay_ptr_reg = susp->vardelay_ptr;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long phase;
phase = (long) (*vardelay_ptr_reg++ * vdscale_reg + offset_reg);
/* now phase should give number of samples of delay */
if (phase < 0) phase = 0;
else if (phase > maxdelay_reg) phase = maxdelay_reg;
phase = index_reg - phase;
/* now phase is a location in the buffer_reg (before modulo) */
/* Time out to update the buffer_reg:
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
* the logical length is bufflen_reg, but the actual length
* is bufflen_reg + 1 to allow for a repeated sample at the
* end. This allows for efficient interpolation.
*/
buffer_reg[index_reg++] = *s1_ptr_reg++;
if (index_reg >= bufflen_reg) {
index_reg = 0;
}
/* back to the phase calculation:
* use conditional instead of modulo
*/
if (phase < 0) phase += bufflen_reg;
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
} while (--n); /* inner loop */
susp->bufflen = bufflen_reg;
susp->index = index_reg;
/* using vardelay_ptr_reg is a bad idea on RS/6000: */
susp->vardelay_ptr += togo;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp_took(vardelay_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tapf_nn_fetch */
void tapf_ni_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type vardelay_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double offset_reg;
register double vdscale_reg;
register long maxdelay_reg;
register long bufflen_reg;
register long index_reg;
register sample_type * buffer_reg;
register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR;
register double vardelay_pHaSe_ReG;
register sample_type vardelay_x1_sample_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "tapf_ni_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
susp->vardelay_x1_sample = (susp->vardelay_cnt--, *(susp->vardelay_ptr));
}
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
vardelay_x2_sample = *(susp->vardelay_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
offset_reg = susp->offset;
vdscale_reg = susp->vdscale;
maxdelay_reg = susp->maxdelay;
bufflen_reg = susp->bufflen;
index_reg = susp->index;
buffer_reg = susp->buffer;
vardelay_pHaSe_ReG = susp->vardelay_pHaSe;
vardelay_x1_sample_reg = susp->vardelay_x1_sample;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long phase;
if (vardelay_pHaSe_ReG >= 1.0) {
vardelay_x1_sample_reg = vardelay_x2_sample;
/* pick up next sample as vardelay_x2_sample: */
susp->vardelay_ptr++;
susp_took(vardelay_cnt, 1);
vardelay_pHaSe_ReG -= 1.0;
susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample);
}
phase = (long) (
(vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg);
/* now phase should give number of samples of delay */
if (phase < 0) phase = 0;
else if (phase > maxdelay_reg) phase = maxdelay_reg;
phase = index_reg - phase;
/* now phase is a location in the buffer_reg (before modulo) */
/* Time out to update the buffer_reg:
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
* the logical length is bufflen_reg, but the actual length
* is bufflen_reg + 1 to allow for a repeated sample at the
* end. This allows for efficient interpolation.
*/
buffer_reg[index_reg++] = *s1_ptr_reg++;
if (index_reg >= bufflen_reg) {
index_reg = 0;
}
/* back to the phase calculation:
* use conditional instead of modulo
*/
if (phase < 0) phase += bufflen_reg;
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->bufflen = bufflen_reg;
susp->index = index_reg;
susp->vardelay_pHaSe = vardelay_pHaSe_ReG;
susp->vardelay_x1_sample = vardelay_x1_sample_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tapf_ni_fetch */
void tapf_nr_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type vardelay_DeLtA;
sample_type vardelay_val;
sample_type vardelay_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double offset_reg;
register double vdscale_reg;
register long maxdelay_reg;
register long bufflen_reg;
register long index_reg;
register sample_type * buffer_reg;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "tapf_nr_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->vardelay_pHaSe = 1.0;
}
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
vardelay_x2_sample = *(susp->vardelay_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* grab next vardelay_x2_sample when phase goes past 1.0; */
/* we use vardelay_n (computed below) to avoid roundoff errors: */
if (susp->vardelay_n <= 0) {
susp->vardelay_x1_sample = vardelay_x2_sample;
susp->vardelay_ptr++;
susp_took(vardelay_cnt, 1);
susp->vardelay_pHaSe -= 1.0;
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
vardelay_x2_sample = *(susp->vardelay_ptr);
/* vardelay_n gets number of samples before phase exceeds 1.0: */
susp->vardelay_n = (long) ((1.0 - susp->vardelay_pHaSe) *
susp->output_per_vardelay);
}
togo = min(togo, susp->vardelay_n);
vardelay_DeLtA = (sample_type) ((vardelay_x2_sample - susp->vardelay_x1_sample) * susp->vardelay_pHaSe_iNcR);
vardelay_val = (sample_type) (susp->vardelay_x1_sample * (1.0 - susp->vardelay_pHaSe) +
vardelay_x2_sample * susp->vardelay_pHaSe);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
offset_reg = susp->offset;
vdscale_reg = susp->vdscale;
maxdelay_reg = susp->maxdelay;
bufflen_reg = susp->bufflen;
index_reg = susp->index;
buffer_reg = susp->buffer;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long phase;
phase = (long) (vardelay_val * vdscale_reg + offset_reg);
/* now phase should give number of samples of delay */
if (phase < 0) phase = 0;
else if (phase > maxdelay_reg) phase = maxdelay_reg;
phase = index_reg - phase;
/* now phase is a location in the buffer_reg (before modulo) */
/* Time out to update the buffer_reg:
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
* the logical length is bufflen_reg, but the actual length
* is bufflen_reg + 1 to allow for a repeated sample at the
* end. This allows for efficient interpolation.
*/
buffer_reg[index_reg++] = *s1_ptr_reg++;
if (index_reg >= bufflen_reg) {
index_reg = 0;
}
/* back to the phase calculation:
* use conditional instead of modulo
*/
if (phase < 0) phase += bufflen_reg;
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
vardelay_val += vardelay_DeLtA;
} while (--n); /* inner loop */
susp->bufflen = bufflen_reg;
susp->index = index_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp->vardelay_pHaSe += togo * susp->vardelay_pHaSe_iNcR;
susp->vardelay_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tapf_nr_fetch */
void tapf_sn_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double offset_reg;
register double vdscale_reg;
register long maxdelay_reg;
register long bufflen_reg;
register long index_reg;
register sample_type * buffer_reg;
register sample_block_values_type vardelay_ptr_reg;
register sample_type s1_scale_reg = susp->s1->scale;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "tapf_sn_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past the vardelay input sample block: */
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
togo = min(togo, susp->vardelay_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
offset_reg = susp->offset;
vdscale_reg = susp->vdscale;
maxdelay_reg = susp->maxdelay;
bufflen_reg = susp->bufflen;
index_reg = susp->index;
buffer_reg = susp->buffer;
vardelay_ptr_reg = susp->vardelay_ptr;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long phase;
phase = (long) (*vardelay_ptr_reg++ * vdscale_reg + offset_reg);
/* now phase should give number of samples of delay */
if (phase < 0) phase = 0;
else if (phase > maxdelay_reg) phase = maxdelay_reg;
phase = index_reg - phase;
/* now phase is a location in the buffer_reg (before modulo) */
/* Time out to update the buffer_reg:
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
* the logical length is bufflen_reg, but the actual length
* is bufflen_reg + 1 to allow for a repeated sample at the
* end. This allows for efficient interpolation.
*/
buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);
if (index_reg >= bufflen_reg) {
index_reg = 0;
}
/* back to the phase calculation:
* use conditional instead of modulo
*/
if (phase < 0) phase += bufflen_reg;
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
} while (--n); /* inner loop */
susp->bufflen = bufflen_reg;
susp->index = index_reg;
/* using vardelay_ptr_reg is a bad idea on RS/6000: */
susp->vardelay_ptr += togo;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp_took(vardelay_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tapf_sn_fetch */
void tapf_si_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type vardelay_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double offset_reg;
register double vdscale_reg;
register long maxdelay_reg;
register long bufflen_reg;
register long index_reg;
register sample_type * buffer_reg;
register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR;
register double vardelay_pHaSe_ReG;
register sample_type vardelay_x1_sample_reg;
register sample_type s1_scale_reg = susp->s1->scale;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "tapf_si_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
susp->vardelay_x1_sample = (susp->vardelay_cnt--, *(susp->vardelay_ptr));
}
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
vardelay_x2_sample = *(susp->vardelay_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
offset_reg = susp->offset;
vdscale_reg = susp->vdscale;
maxdelay_reg = susp->maxdelay;
bufflen_reg = susp->bufflen;
index_reg = susp->index;
buffer_reg = susp->buffer;
vardelay_pHaSe_ReG = susp->vardelay_pHaSe;
vardelay_x1_sample_reg = susp->vardelay_x1_sample;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long phase;
if (vardelay_pHaSe_ReG >= 1.0) {
vardelay_x1_sample_reg = vardelay_x2_sample;
/* pick up next sample as vardelay_x2_sample: */
susp->vardelay_ptr++;
susp_took(vardelay_cnt, 1);
vardelay_pHaSe_ReG -= 1.0;
susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample);
}
phase = (long) (
(vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg);
/* now phase should give number of samples of delay */
if (phase < 0) phase = 0;
else if (phase > maxdelay_reg) phase = maxdelay_reg;
phase = index_reg - phase;
/* now phase is a location in the buffer_reg (before modulo) */
/* Time out to update the buffer_reg:
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
* the logical length is bufflen_reg, but the actual length
* is bufflen_reg + 1 to allow for a repeated sample at the
* end. This allows for efficient interpolation.
*/
buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);
if (index_reg >= bufflen_reg) {
index_reg = 0;
}
/* back to the phase calculation:
* use conditional instead of modulo
*/
if (phase < 0) phase += bufflen_reg;
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->bufflen = bufflen_reg;
susp->index = index_reg;
susp->vardelay_pHaSe = vardelay_pHaSe_ReG;
susp->vardelay_x1_sample = vardelay_x1_sample_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tapf_si_fetch */
void tapf_sr_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type vardelay_DeLtA;
sample_type vardelay_val;
sample_type vardelay_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double offset_reg;
register double vdscale_reg;
register long maxdelay_reg;
register long bufflen_reg;
register long index_reg;
register sample_type * buffer_reg;
register sample_type s1_scale_reg = susp->s1->scale;
register sample_block_values_type s1_ptr_reg;
falloc_sample_block(out, "tapf_sr_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->vardelay_pHaSe = 1.0;
}
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
vardelay_x2_sample = *(susp->vardelay_ptr);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s1 input sample block: */
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
togo = min(togo, susp->s1_cnt);
/* grab next vardelay_x2_sample when phase goes past 1.0; */
/* we use vardelay_n (computed below) to avoid roundoff errors: */
if (susp->vardelay_n <= 0) {
susp->vardelay_x1_sample = vardelay_x2_sample;
susp->vardelay_ptr++;
susp_took(vardelay_cnt, 1);
susp->vardelay_pHaSe -= 1.0;
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
vardelay_x2_sample = *(susp->vardelay_ptr);
/* vardelay_n gets number of samples before phase exceeds 1.0: */
susp->vardelay_n = (long) ((1.0 - susp->vardelay_pHaSe) *
susp->output_per_vardelay);
}
togo = min(togo, susp->vardelay_n);
vardelay_DeLtA = (sample_type) ((vardelay_x2_sample - susp->vardelay_x1_sample) * susp->vardelay_pHaSe_iNcR);
vardelay_val = (sample_type) (susp->vardelay_x1_sample * (1.0 - susp->vardelay_pHaSe) +
vardelay_x2_sample * susp->vardelay_pHaSe);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
offset_reg = susp->offset;
vdscale_reg = susp->vdscale;
maxdelay_reg = susp->maxdelay;
bufflen_reg = susp->bufflen;
index_reg = susp->index;
buffer_reg = susp->buffer;
s1_ptr_reg = susp->s1_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long phase;
phase = (long) (vardelay_val * vdscale_reg + offset_reg);
/* now phase should give number of samples of delay */
if (phase < 0) phase = 0;
else if (phase > maxdelay_reg) phase = maxdelay_reg;
phase = index_reg - phase;
/* now phase is a location in the buffer_reg (before modulo) */
/* Time out to update the buffer_reg:
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
* the logical length is bufflen_reg, but the actual length
* is bufflen_reg + 1 to allow for a repeated sample at the
* end. This allows for efficient interpolation.
*/
buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);
if (index_reg >= bufflen_reg) {
index_reg = 0;
}
/* back to the phase calculation:
* use conditional instead of modulo
*/
if (phase < 0) phase += bufflen_reg;
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
vardelay_val += vardelay_DeLtA;
} while (--n); /* inner loop */
susp->bufflen = bufflen_reg;
susp->index = index_reg;
/* using s1_ptr_reg is a bad idea on RS/6000: */
susp->s1_ptr += togo;
out_ptr += togo;
susp_took(s1_cnt, togo);
susp->vardelay_pHaSe += togo * susp->vardelay_pHaSe_iNcR;
susp->vardelay_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* tapf_sr_fetch */
void tapf_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from s1 up to final_time for this block of zeros */
while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >=
susp->s1->current)
susp_get_samples(s1, s1_ptr, s1_cnt);
/* fetch samples from vardelay up to final_time for this block of zeros */
while ((round((final_time - susp->vardelay->t0) * susp->vardelay->sr)) >=
susp->vardelay->current)
susp_get_samples(vardelay, vardelay_ptr, vardelay_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->s1->t0) * susp->s1->sr -
(susp->s1->current - susp->s1_cnt));
susp->s1_ptr += n;
susp_took(s1_cnt, n);
n = round((final_time - susp->vardelay->t0) * susp->vardelay->sr -
(susp->vardelay->current - susp->vardelay_cnt));
susp->vardelay_ptr += n;
susp_took(vardelay_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(a_susp, snd_list);
}
void tapf_mark(snd_susp_type a_susp)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
sound_xlmark(susp->s1);
sound_xlmark(susp->vardelay);
}
void tapf_free(snd_susp_type a_susp)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
free(susp->buffer);
sound_unref(susp->s1);
sound_unref(susp->vardelay);
ffree_generic(susp, sizeof(tapf_susp_node), "tapf_free");
}
void tapf_print_tree(snd_susp_type a_susp, int n)
{
tapf_susp_type susp = (tapf_susp_type) a_susp;
indent(n);
stdputstr("s1:");
sound_print_tree_1(susp->s1, n);
indent(n);
stdputstr("vardelay:");
sound_print_tree_1(susp->vardelay, n);
}
sound_type snd_make_tapf(sound_type s1, double offset, sound_type vardelay, double maxdelay)
{
register tapf_susp_type susp;
rate_type sr = s1->sr;
time_type t0 = max(s1->t0, vardelay->t0);
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, tapf_susp_node, "snd_make_tapf");
susp->offset = offset * s1->sr;
susp->vdscale = vardelay->scale * s1->sr;
susp->maxdelay = (long)(maxdelay * s1->sr);
susp->bufflen = max(2, (long) (susp->maxdelay + 0.5));
susp->index = susp->bufflen;
susp->buffer = (sample_type *) calloc(susp->bufflen + 1, sizeof(sample_type));
/* make sure no sample rate is too high */
if (vardelay->sr > sr) {
sound_unref(vardelay);
snd_badsr();
}
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(s1, sr);
interp_desc = (interp_desc << 2) + interp_style(vardelay, sr);
switch (interp_desc) {
case INTERP_ns: /* handled below */
case INTERP_nn: susp->susp.fetch = tapf_nn_fetch; break;
case INTERP_ni: susp->susp.fetch = tapf_ni_fetch; break;
case INTERP_nr: susp->susp.fetch = tapf_nr_fetch; break;
case INTERP_ss: /* handled below */
case INTERP_sn: susp->susp.fetch = tapf_sn_fetch; break;
case INTERP_si: susp->susp.fetch = tapf_si_fetch; break;
case INTERP_sr: susp->susp.fetch = tapf_sr_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s1->t0) sound_prepend_zeros(s1, t0);
if (t0 < vardelay->t0) sound_prepend_zeros(vardelay, t0);
/* minimum start time over all inputs: */
t0_min = min(s1->t0, min(vardelay->t0, t0));
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = tapf_toss_fetch;
}
/* initialize susp state */
susp->susp.free = tapf_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = tapf_mark;
susp->susp.print_tree = tapf_print_tree;
susp->susp.name = "tapf";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1);
susp->started = false;
susp->susp.current = 0;
susp->s1 = s1;
susp->s1_cnt = 0;
susp->vardelay = vardelay;
susp->vardelay_cnt = 0;
susp->vardelay_pHaSe = 0.0;
susp->vardelay_pHaSe_iNcR = vardelay->sr / sr;
susp->vardelay_n = 0;
susp->output_per_vardelay = sr / vardelay->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_tapf(sound_type s1, double offset, sound_type vardelay, double maxdelay)
{
sound_type s1_copy = sound_copy(s1);
sound_type vardelay_copy = sound_copy(vardelay);
return snd_make_tapf(s1_copy, offset, vardelay_copy, maxdelay);
}