mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-03 17:19:43 +02:00
1085 lines
36 KiB
C
1085 lines
36 KiB
C
#include "stdio.h"
|
|
#ifndef mips
|
|
#include "stdlib.h"
|
|
#endif
|
|
#include "xlisp.h"
|
|
#include "sound.h"
|
|
|
|
#include "falloc.h"
|
|
#include "cext.h"
|
|
#include "tapf.h"
|
|
|
|
void tapf_free(snd_susp_type a_susp);
|
|
|
|
|
|
typedef struct tapf_susp_struct {
|
|
snd_susp_node susp;
|
|
boolean started;
|
|
long terminate_cnt;
|
|
boolean logically_stopped;
|
|
sound_type s1;
|
|
long s1_cnt;
|
|
sample_block_values_type s1_ptr;
|
|
sound_type vardelay;
|
|
long vardelay_cnt;
|
|
sample_block_values_type vardelay_ptr;
|
|
|
|
/* support for interpolation of vardelay */
|
|
sample_type vardelay_x1_sample;
|
|
double vardelay_pHaSe;
|
|
double vardelay_pHaSe_iNcR;
|
|
|
|
/* support for ramp between samples of vardelay */
|
|
double output_per_vardelay;
|
|
long vardelay_n;
|
|
|
|
double offset;
|
|
double vdscale;
|
|
long maxdelay;
|
|
long bufflen;
|
|
long index;
|
|
sample_type *buffer;
|
|
} tapf_susp_node, *tapf_susp_type;
|
|
|
|
|
|
void tapf_nn_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double offset_reg;
|
|
register double vdscale_reg;
|
|
register long maxdelay_reg;
|
|
register long bufflen_reg;
|
|
register long index_reg;
|
|
register sample_type * buffer_reg;
|
|
register sample_block_values_type vardelay_ptr_reg;
|
|
register sample_block_values_type s1_ptr_reg;
|
|
falloc_sample_block(out, "tapf_nn_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s1 input sample block: */
|
|
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
|
|
togo = min(togo, susp->s1_cnt);
|
|
|
|
/* don't run past the vardelay input sample block: */
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
togo = min(togo, susp->vardelay_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
offset_reg = susp->offset;
|
|
vdscale_reg = susp->vdscale;
|
|
maxdelay_reg = susp->maxdelay;
|
|
bufflen_reg = susp->bufflen;
|
|
index_reg = susp->index;
|
|
buffer_reg = susp->buffer;
|
|
vardelay_ptr_reg = susp->vardelay_ptr;
|
|
s1_ptr_reg = susp->s1_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long phase;
|
|
phase = (long) (*vardelay_ptr_reg++ * vdscale_reg + offset_reg);
|
|
/* now phase should give number of samples of delay */
|
|
if (phase < 0) phase = 0;
|
|
else if (phase > maxdelay_reg) phase = maxdelay_reg;
|
|
phase = index_reg - phase;
|
|
/* now phase is a location in the buffer_reg (before modulo) */
|
|
|
|
/* Time out to update the buffer_reg:
|
|
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
|
|
* the logical length is bufflen_reg, but the actual length
|
|
* is bufflen_reg + 1 to allow for a repeated sample at the
|
|
* end. This allows for efficient interpolation.
|
|
*/
|
|
buffer_reg[index_reg++] = *s1_ptr_reg++;
|
|
if (index_reg >= bufflen_reg) {
|
|
index_reg = 0;
|
|
}
|
|
|
|
/* back to the phase calculation:
|
|
* use conditional instead of modulo
|
|
*/
|
|
if (phase < 0) phase += bufflen_reg;
|
|
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->bufflen = bufflen_reg;
|
|
susp->index = index_reg;
|
|
/* using vardelay_ptr_reg is a bad idea on RS/6000: */
|
|
susp->vardelay_ptr += togo;
|
|
/* using s1_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s1_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s1_cnt, togo);
|
|
susp_took(vardelay_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* tapf_nn_fetch */
|
|
|
|
|
|
void tapf_ni_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
sample_type vardelay_x2_sample;
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double offset_reg;
|
|
register double vdscale_reg;
|
|
register long maxdelay_reg;
|
|
register long bufflen_reg;
|
|
register long index_reg;
|
|
register sample_type * buffer_reg;
|
|
register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR;
|
|
register double vardelay_pHaSe_ReG;
|
|
register sample_type vardelay_x1_sample_reg;
|
|
register sample_block_values_type s1_ptr_reg;
|
|
falloc_sample_block(out, "tapf_ni_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
susp->vardelay_x1_sample = (susp->vardelay_cnt--, *(susp->vardelay_ptr));
|
|
}
|
|
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
vardelay_x2_sample = *(susp->vardelay_ptr);
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s1 input sample block: */
|
|
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
|
|
togo = min(togo, susp->s1_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
offset_reg = susp->offset;
|
|
vdscale_reg = susp->vdscale;
|
|
maxdelay_reg = susp->maxdelay;
|
|
bufflen_reg = susp->bufflen;
|
|
index_reg = susp->index;
|
|
buffer_reg = susp->buffer;
|
|
vardelay_pHaSe_ReG = susp->vardelay_pHaSe;
|
|
vardelay_x1_sample_reg = susp->vardelay_x1_sample;
|
|
s1_ptr_reg = susp->s1_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long phase;
|
|
if (vardelay_pHaSe_ReG >= 1.0) {
|
|
vardelay_x1_sample_reg = vardelay_x2_sample;
|
|
/* pick up next sample as vardelay_x2_sample: */
|
|
susp->vardelay_ptr++;
|
|
susp_took(vardelay_cnt, 1);
|
|
vardelay_pHaSe_ReG -= 1.0;
|
|
susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample);
|
|
}
|
|
phase = (long) (
|
|
(vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg);
|
|
/* now phase should give number of samples of delay */
|
|
if (phase < 0) phase = 0;
|
|
else if (phase > maxdelay_reg) phase = maxdelay_reg;
|
|
phase = index_reg - phase;
|
|
/* now phase is a location in the buffer_reg (before modulo) */
|
|
|
|
/* Time out to update the buffer_reg:
|
|
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
|
|
* the logical length is bufflen_reg, but the actual length
|
|
* is bufflen_reg + 1 to allow for a repeated sample at the
|
|
* end. This allows for efficient interpolation.
|
|
*/
|
|
buffer_reg[index_reg++] = *s1_ptr_reg++;
|
|
if (index_reg >= bufflen_reg) {
|
|
index_reg = 0;
|
|
}
|
|
|
|
/* back to the phase calculation:
|
|
* use conditional instead of modulo
|
|
*/
|
|
if (phase < 0) phase += bufflen_reg;
|
|
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
|
|
vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg;
|
|
} while (--n); /* inner loop */
|
|
|
|
togo -= n;
|
|
susp->bufflen = bufflen_reg;
|
|
susp->index = index_reg;
|
|
susp->vardelay_pHaSe = vardelay_pHaSe_ReG;
|
|
susp->vardelay_x1_sample = vardelay_x1_sample_reg;
|
|
/* using s1_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s1_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s1_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* tapf_ni_fetch */
|
|
|
|
|
|
void tapf_nr_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
sample_type vardelay_DeLtA;
|
|
sample_type vardelay_val;
|
|
sample_type vardelay_x2_sample;
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double offset_reg;
|
|
register double vdscale_reg;
|
|
register long maxdelay_reg;
|
|
register long bufflen_reg;
|
|
register long index_reg;
|
|
register sample_type * buffer_reg;
|
|
register sample_block_values_type s1_ptr_reg;
|
|
falloc_sample_block(out, "tapf_nr_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp->vardelay_pHaSe = 1.0;
|
|
}
|
|
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
vardelay_x2_sample = *(susp->vardelay_ptr);
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s1 input sample block: */
|
|
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
|
|
togo = min(togo, susp->s1_cnt);
|
|
|
|
/* grab next vardelay_x2_sample when phase goes past 1.0; */
|
|
/* we use vardelay_n (computed below) to avoid roundoff errors: */
|
|
if (susp->vardelay_n <= 0) {
|
|
susp->vardelay_x1_sample = vardelay_x2_sample;
|
|
susp->vardelay_ptr++;
|
|
susp_took(vardelay_cnt, 1);
|
|
susp->vardelay_pHaSe -= 1.0;
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
vardelay_x2_sample = *(susp->vardelay_ptr);
|
|
/* vardelay_n gets number of samples before phase exceeds 1.0: */
|
|
susp->vardelay_n = (long) ((1.0 - susp->vardelay_pHaSe) *
|
|
susp->output_per_vardelay);
|
|
}
|
|
togo = min(togo, susp->vardelay_n);
|
|
vardelay_DeLtA = (sample_type) ((vardelay_x2_sample - susp->vardelay_x1_sample) * susp->vardelay_pHaSe_iNcR);
|
|
vardelay_val = (sample_type) (susp->vardelay_x1_sample * (1.0 - susp->vardelay_pHaSe) +
|
|
vardelay_x2_sample * susp->vardelay_pHaSe);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
offset_reg = susp->offset;
|
|
vdscale_reg = susp->vdscale;
|
|
maxdelay_reg = susp->maxdelay;
|
|
bufflen_reg = susp->bufflen;
|
|
index_reg = susp->index;
|
|
buffer_reg = susp->buffer;
|
|
s1_ptr_reg = susp->s1_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long phase;
|
|
phase = (long) (vardelay_val * vdscale_reg + offset_reg);
|
|
/* now phase should give number of samples of delay */
|
|
if (phase < 0) phase = 0;
|
|
else if (phase > maxdelay_reg) phase = maxdelay_reg;
|
|
phase = index_reg - phase;
|
|
/* now phase is a location in the buffer_reg (before modulo) */
|
|
|
|
/* Time out to update the buffer_reg:
|
|
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
|
|
* the logical length is bufflen_reg, but the actual length
|
|
* is bufflen_reg + 1 to allow for a repeated sample at the
|
|
* end. This allows for efficient interpolation.
|
|
*/
|
|
buffer_reg[index_reg++] = *s1_ptr_reg++;
|
|
if (index_reg >= bufflen_reg) {
|
|
index_reg = 0;
|
|
}
|
|
|
|
/* back to the phase calculation:
|
|
* use conditional instead of modulo
|
|
*/
|
|
if (phase < 0) phase += bufflen_reg;
|
|
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
|
|
vardelay_val += vardelay_DeLtA;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->bufflen = bufflen_reg;
|
|
susp->index = index_reg;
|
|
/* using s1_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s1_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s1_cnt, togo);
|
|
susp->vardelay_pHaSe += togo * susp->vardelay_pHaSe_iNcR;
|
|
susp->vardelay_n -= togo;
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* tapf_nr_fetch */
|
|
|
|
|
|
void tapf_sn_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double offset_reg;
|
|
register double vdscale_reg;
|
|
register long maxdelay_reg;
|
|
register long bufflen_reg;
|
|
register long index_reg;
|
|
register sample_type * buffer_reg;
|
|
register sample_block_values_type vardelay_ptr_reg;
|
|
register sample_type s1_scale_reg = susp->s1->scale;
|
|
register sample_block_values_type s1_ptr_reg;
|
|
falloc_sample_block(out, "tapf_sn_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s1 input sample block: */
|
|
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
|
|
togo = min(togo, susp->s1_cnt);
|
|
|
|
/* don't run past the vardelay input sample block: */
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
togo = min(togo, susp->vardelay_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
offset_reg = susp->offset;
|
|
vdscale_reg = susp->vdscale;
|
|
maxdelay_reg = susp->maxdelay;
|
|
bufflen_reg = susp->bufflen;
|
|
index_reg = susp->index;
|
|
buffer_reg = susp->buffer;
|
|
vardelay_ptr_reg = susp->vardelay_ptr;
|
|
s1_ptr_reg = susp->s1_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long phase;
|
|
phase = (long) (*vardelay_ptr_reg++ * vdscale_reg + offset_reg);
|
|
/* now phase should give number of samples of delay */
|
|
if (phase < 0) phase = 0;
|
|
else if (phase > maxdelay_reg) phase = maxdelay_reg;
|
|
phase = index_reg - phase;
|
|
/* now phase is a location in the buffer_reg (before modulo) */
|
|
|
|
/* Time out to update the buffer_reg:
|
|
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
|
|
* the logical length is bufflen_reg, but the actual length
|
|
* is bufflen_reg + 1 to allow for a repeated sample at the
|
|
* end. This allows for efficient interpolation.
|
|
*/
|
|
buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);
|
|
if (index_reg >= bufflen_reg) {
|
|
index_reg = 0;
|
|
}
|
|
|
|
/* back to the phase calculation:
|
|
* use conditional instead of modulo
|
|
*/
|
|
if (phase < 0) phase += bufflen_reg;
|
|
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->bufflen = bufflen_reg;
|
|
susp->index = index_reg;
|
|
/* using vardelay_ptr_reg is a bad idea on RS/6000: */
|
|
susp->vardelay_ptr += togo;
|
|
/* using s1_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s1_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s1_cnt, togo);
|
|
susp_took(vardelay_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* tapf_sn_fetch */
|
|
|
|
|
|
void tapf_si_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
sample_type vardelay_x2_sample;
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double offset_reg;
|
|
register double vdscale_reg;
|
|
register long maxdelay_reg;
|
|
register long bufflen_reg;
|
|
register long index_reg;
|
|
register sample_type * buffer_reg;
|
|
register double vardelay_pHaSe_iNcR_rEg = susp->vardelay_pHaSe_iNcR;
|
|
register double vardelay_pHaSe_ReG;
|
|
register sample_type vardelay_x1_sample_reg;
|
|
register sample_type s1_scale_reg = susp->s1->scale;
|
|
register sample_block_values_type s1_ptr_reg;
|
|
falloc_sample_block(out, "tapf_si_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
susp->vardelay_x1_sample = (susp->vardelay_cnt--, *(susp->vardelay_ptr));
|
|
}
|
|
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
vardelay_x2_sample = *(susp->vardelay_ptr);
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s1 input sample block: */
|
|
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
|
|
togo = min(togo, susp->s1_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
offset_reg = susp->offset;
|
|
vdscale_reg = susp->vdscale;
|
|
maxdelay_reg = susp->maxdelay;
|
|
bufflen_reg = susp->bufflen;
|
|
index_reg = susp->index;
|
|
buffer_reg = susp->buffer;
|
|
vardelay_pHaSe_ReG = susp->vardelay_pHaSe;
|
|
vardelay_x1_sample_reg = susp->vardelay_x1_sample;
|
|
s1_ptr_reg = susp->s1_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long phase;
|
|
if (vardelay_pHaSe_ReG >= 1.0) {
|
|
vardelay_x1_sample_reg = vardelay_x2_sample;
|
|
/* pick up next sample as vardelay_x2_sample: */
|
|
susp->vardelay_ptr++;
|
|
susp_took(vardelay_cnt, 1);
|
|
vardelay_pHaSe_ReG -= 1.0;
|
|
susp_check_term_samples_break(vardelay, vardelay_ptr, vardelay_cnt, vardelay_x2_sample);
|
|
}
|
|
phase = (long) (
|
|
(vardelay_x1_sample_reg * (1 - vardelay_pHaSe_ReG) + vardelay_x2_sample * vardelay_pHaSe_ReG) * vdscale_reg + offset_reg);
|
|
/* now phase should give number of samples of delay */
|
|
if (phase < 0) phase = 0;
|
|
else if (phase > maxdelay_reg) phase = maxdelay_reg;
|
|
phase = index_reg - phase;
|
|
/* now phase is a location in the buffer_reg (before modulo) */
|
|
|
|
/* Time out to update the buffer_reg:
|
|
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
|
|
* the logical length is bufflen_reg, but the actual length
|
|
* is bufflen_reg + 1 to allow for a repeated sample at the
|
|
* end. This allows for efficient interpolation.
|
|
*/
|
|
buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);
|
|
if (index_reg >= bufflen_reg) {
|
|
index_reg = 0;
|
|
}
|
|
|
|
/* back to the phase calculation:
|
|
* use conditional instead of modulo
|
|
*/
|
|
if (phase < 0) phase += bufflen_reg;
|
|
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
|
|
vardelay_pHaSe_ReG += vardelay_pHaSe_iNcR_rEg;
|
|
} while (--n); /* inner loop */
|
|
|
|
togo -= n;
|
|
susp->bufflen = bufflen_reg;
|
|
susp->index = index_reg;
|
|
susp->vardelay_pHaSe = vardelay_pHaSe_ReG;
|
|
susp->vardelay_x1_sample = vardelay_x1_sample_reg;
|
|
/* using s1_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s1_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s1_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* tapf_si_fetch */
|
|
|
|
|
|
void tapf_sr_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
sample_type vardelay_DeLtA;
|
|
sample_type vardelay_val;
|
|
sample_type vardelay_x2_sample;
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double offset_reg;
|
|
register double vdscale_reg;
|
|
register long maxdelay_reg;
|
|
register long bufflen_reg;
|
|
register long index_reg;
|
|
register sample_type * buffer_reg;
|
|
register sample_type s1_scale_reg = susp->s1->scale;
|
|
register sample_block_values_type s1_ptr_reg;
|
|
falloc_sample_block(out, "tapf_sr_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
/* make sure sounds are primed with first values */
|
|
if (!susp->started) {
|
|
susp->started = true;
|
|
susp->vardelay_pHaSe = 1.0;
|
|
}
|
|
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
vardelay_x2_sample = *(susp->vardelay_ptr);
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the s1 input sample block: */
|
|
susp_check_term_log_samples(s1, s1_ptr, s1_cnt);
|
|
togo = min(togo, susp->s1_cnt);
|
|
|
|
/* grab next vardelay_x2_sample when phase goes past 1.0; */
|
|
/* we use vardelay_n (computed below) to avoid roundoff errors: */
|
|
if (susp->vardelay_n <= 0) {
|
|
susp->vardelay_x1_sample = vardelay_x2_sample;
|
|
susp->vardelay_ptr++;
|
|
susp_took(vardelay_cnt, 1);
|
|
susp->vardelay_pHaSe -= 1.0;
|
|
susp_check_term_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
vardelay_x2_sample = *(susp->vardelay_ptr);
|
|
/* vardelay_n gets number of samples before phase exceeds 1.0: */
|
|
susp->vardelay_n = (long) ((1.0 - susp->vardelay_pHaSe) *
|
|
susp->output_per_vardelay);
|
|
}
|
|
togo = min(togo, susp->vardelay_n);
|
|
vardelay_DeLtA = (sample_type) ((vardelay_x2_sample - susp->vardelay_x1_sample) * susp->vardelay_pHaSe_iNcR);
|
|
vardelay_val = (sample_type) (susp->vardelay_x1_sample * (1.0 - susp->vardelay_pHaSe) +
|
|
vardelay_x2_sample * susp->vardelay_pHaSe);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
|
|
/* don't run past logical stop time */
|
|
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
|
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
|
/* break if to_stop == 0 (we're at the logical stop)
|
|
* AND cnt > 0 (we're not at the beginning of the
|
|
* output block).
|
|
*/
|
|
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
|
|
if (to_stop < togo) {
|
|
if (to_stop == 0) {
|
|
if (cnt) {
|
|
togo = 0;
|
|
break;
|
|
} else /* keep togo as is: since cnt == 0, we
|
|
* can set the logical stop flag on this
|
|
* output block
|
|
*/
|
|
susp->logically_stopped = true;
|
|
} else /* limit togo so we can start a new
|
|
* block at the LST
|
|
*/
|
|
togo = to_stop;
|
|
}
|
|
}
|
|
|
|
n = togo;
|
|
offset_reg = susp->offset;
|
|
vdscale_reg = susp->vdscale;
|
|
maxdelay_reg = susp->maxdelay;
|
|
bufflen_reg = susp->bufflen;
|
|
index_reg = susp->index;
|
|
buffer_reg = susp->buffer;
|
|
s1_ptr_reg = susp->s1_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
long phase;
|
|
phase = (long) (vardelay_val * vdscale_reg + offset_reg);
|
|
/* now phase should give number of samples of delay */
|
|
if (phase < 0) phase = 0;
|
|
else if (phase > maxdelay_reg) phase = maxdelay_reg;
|
|
phase = index_reg - phase;
|
|
/* now phase is a location in the buffer_reg (before modulo) */
|
|
|
|
/* Time out to update the buffer_reg:
|
|
* this is a tricky buffer_reg: buffer_reg[0] == buffer_reg[bufflen_reg]
|
|
* the logical length is bufflen_reg, but the actual length
|
|
* is bufflen_reg + 1 to allow for a repeated sample at the
|
|
* end. This allows for efficient interpolation.
|
|
*/
|
|
buffer_reg[index_reg++] = (s1_scale_reg * *s1_ptr_reg++);
|
|
if (index_reg >= bufflen_reg) {
|
|
index_reg = 0;
|
|
}
|
|
|
|
/* back to the phase calculation:
|
|
* use conditional instead of modulo
|
|
*/
|
|
if (phase < 0) phase += bufflen_reg;
|
|
*out_ptr_reg++ = (sample_type) (buffer_reg[phase]);
|
|
vardelay_val += vardelay_DeLtA;
|
|
} while (--n); /* inner loop */
|
|
|
|
susp->bufflen = bufflen_reg;
|
|
susp->index = index_reg;
|
|
/* using s1_ptr_reg is a bad idea on RS/6000: */
|
|
susp->s1_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(s1_cnt, togo);
|
|
susp->vardelay_pHaSe += togo * susp->vardelay_pHaSe_iNcR;
|
|
susp->vardelay_n -= togo;
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
/* test for logical stop */
|
|
if (susp->logically_stopped) {
|
|
snd_list->logically_stopped = true;
|
|
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
|
susp->logically_stopped = true;
|
|
}
|
|
} /* tapf_sr_fetch */
|
|
|
|
|
|
void tapf_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
time_type final_time = susp->susp.t0;
|
|
long n;
|
|
|
|
/* fetch samples from s1 up to final_time for this block of zeros */
|
|
while ((round((final_time - susp->s1->t0) * susp->s1->sr)) >=
|
|
susp->s1->current)
|
|
susp_get_samples(s1, s1_ptr, s1_cnt);
|
|
/* fetch samples from vardelay up to final_time for this block of zeros */
|
|
while ((round((final_time - susp->vardelay->t0) * susp->vardelay->sr)) >=
|
|
susp->vardelay->current)
|
|
susp_get_samples(vardelay, vardelay_ptr, vardelay_cnt);
|
|
/* convert to normal processing when we hit final_count */
|
|
/* we want each signal positioned at final_time */
|
|
n = round((final_time - susp->s1->t0) * susp->s1->sr -
|
|
(susp->s1->current - susp->s1_cnt));
|
|
susp->s1_ptr += n;
|
|
susp_took(s1_cnt, n);
|
|
n = round((final_time - susp->vardelay->t0) * susp->vardelay->sr -
|
|
(susp->vardelay->current - susp->vardelay_cnt));
|
|
susp->vardelay_ptr += n;
|
|
susp_took(vardelay_cnt, n);
|
|
susp->susp.fetch = susp->susp.keep_fetch;
|
|
(*(susp->susp.fetch))(a_susp, snd_list);
|
|
}
|
|
|
|
|
|
void tapf_mark(snd_susp_type a_susp)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
sound_xlmark(susp->s1);
|
|
sound_xlmark(susp->vardelay);
|
|
}
|
|
|
|
|
|
void tapf_free(snd_susp_type a_susp)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
free(susp->buffer);
|
|
sound_unref(susp->s1);
|
|
sound_unref(susp->vardelay);
|
|
ffree_generic(susp, sizeof(tapf_susp_node), "tapf_free");
|
|
}
|
|
|
|
|
|
void tapf_print_tree(snd_susp_type a_susp, int n)
|
|
{
|
|
tapf_susp_type susp = (tapf_susp_type) a_susp;
|
|
indent(n);
|
|
stdputstr("s1:");
|
|
sound_print_tree_1(susp->s1, n);
|
|
|
|
indent(n);
|
|
stdputstr("vardelay:");
|
|
sound_print_tree_1(susp->vardelay, n);
|
|
}
|
|
|
|
|
|
sound_type snd_make_tapf(sound_type s1, double offset, sound_type vardelay, double maxdelay)
|
|
{
|
|
register tapf_susp_type susp;
|
|
rate_type sr = s1->sr;
|
|
time_type t0 = max(s1->t0, vardelay->t0);
|
|
int interp_desc = 0;
|
|
sample_type scale_factor = 1.0F;
|
|
time_type t0_min = t0;
|
|
falloc_generic(susp, tapf_susp_node, "snd_make_tapf");
|
|
susp->offset = offset * s1->sr;
|
|
susp->vdscale = vardelay->scale * s1->sr;
|
|
susp->maxdelay = (long)(maxdelay * s1->sr);
|
|
susp->bufflen = max(2, (long) (susp->maxdelay + 0.5));
|
|
susp->index = susp->bufflen;
|
|
susp->buffer = (sample_type *) calloc(susp->bufflen + 1, sizeof(sample_type));
|
|
|
|
/* make sure no sample rate is too high */
|
|
if (vardelay->sr > sr) {
|
|
sound_unref(vardelay);
|
|
snd_badsr();
|
|
}
|
|
|
|
/* select a susp fn based on sample rates */
|
|
interp_desc = (interp_desc << 2) + interp_style(s1, sr);
|
|
interp_desc = (interp_desc << 2) + interp_style(vardelay, sr);
|
|
switch (interp_desc) {
|
|
case INTERP_ns: /* handled below */
|
|
case INTERP_nn: susp->susp.fetch = tapf_nn_fetch; break;
|
|
case INTERP_ni: susp->susp.fetch = tapf_ni_fetch; break;
|
|
case INTERP_nr: susp->susp.fetch = tapf_nr_fetch; break;
|
|
case INTERP_ss: /* handled below */
|
|
case INTERP_sn: susp->susp.fetch = tapf_sn_fetch; break;
|
|
case INTERP_si: susp->susp.fetch = tapf_si_fetch; break;
|
|
case INTERP_sr: susp->susp.fetch = tapf_sr_fetch; break;
|
|
default: snd_badsr(); break;
|
|
}
|
|
|
|
susp->terminate_cnt = UNKNOWN;
|
|
/* handle unequal start times, if any */
|
|
if (t0 < s1->t0) sound_prepend_zeros(s1, t0);
|
|
if (t0 < vardelay->t0) sound_prepend_zeros(vardelay, t0);
|
|
/* minimum start time over all inputs: */
|
|
t0_min = min(s1->t0, min(vardelay->t0, t0));
|
|
/* how many samples to toss before t0: */
|
|
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
|
|
if (susp->susp.toss_cnt > 0) {
|
|
susp->susp.keep_fetch = susp->susp.fetch;
|
|
susp->susp.fetch = tapf_toss_fetch;
|
|
}
|
|
|
|
/* initialize susp state */
|
|
susp->susp.free = tapf_free;
|
|
susp->susp.sr = sr;
|
|
susp->susp.t0 = t0;
|
|
susp->susp.mark = tapf_mark;
|
|
susp->susp.print_tree = tapf_print_tree;
|
|
susp->susp.name = "tapf";
|
|
susp->logically_stopped = false;
|
|
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s1);
|
|
susp->started = false;
|
|
susp->susp.current = 0;
|
|
susp->s1 = s1;
|
|
susp->s1_cnt = 0;
|
|
susp->vardelay = vardelay;
|
|
susp->vardelay_cnt = 0;
|
|
susp->vardelay_pHaSe = 0.0;
|
|
susp->vardelay_pHaSe_iNcR = vardelay->sr / sr;
|
|
susp->vardelay_n = 0;
|
|
susp->output_per_vardelay = sr / vardelay->sr;
|
|
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
|
|
}
|
|
|
|
|
|
sound_type snd_tapf(sound_type s1, double offset, sound_type vardelay, double maxdelay)
|
|
{
|
|
sound_type s1_copy = sound_copy(s1);
|
|
sound_type vardelay_copy = sound_copy(vardelay);
|
|
return snd_make_tapf(s1_copy, offset, vardelay_copy, maxdelay);
|
|
}
|