1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-04 09:39:42 +02:00
2015-04-07 22:10:17 -05:00

888 lines
28 KiB
C

#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "eqbandvvv.h"
void eqbandvvv_free(snd_susp_type a_susp);
typedef struct eqbandvvv_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type input;
long input_cnt;
sample_block_values_type input_ptr;
sound_type hz;
long hz_cnt;
sample_block_values_type hz_ptr;
/* support for interpolation of hz */
sample_type hz_x1_sample;
double hz_pHaSe;
double hz_pHaSe_iNcR;
/* support for ramp between samples of hz */
double output_per_hz;
long hz_n;
sound_type gain;
long gain_cnt;
sample_block_values_type gain_ptr;
/* support for interpolation of gain */
sample_type gain_x1_sample;
double gain_pHaSe;
double gain_pHaSe_iNcR;
/* support for ramp between samples of gain */
double output_per_gain;
long gain_n;
sound_type width;
long width_cnt;
sample_block_values_type width_ptr;
/* support for interpolation of width */
sample_type width_x1_sample;
double width_pHaSe;
double width_pHaSe_iNcR;
/* support for ramp between samples of width */
double output_per_width;
long width_n;
double inp_scale;
double w1;
double sw;
double cw;
double J;
double gg;
double b0;
double b1;
double b2;
double a0;
double a1;
double a2;
double z1;
double z2;
boolean recompute;
double inp_period;
} eqbandvvv_susp_node, *eqbandvvv_susp_type;
#define log_of_2_over_2 0.3465735902799726547086
void eqbandvvv_nsss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double w1_reg;
register double sw_reg;
register double cw_reg;
register double J_reg;
register double gg_reg;
register double b0_reg;
register double b1_reg;
register double b2_reg;
register double a0_reg;
register double a1_reg;
register double a2_reg;
register double z1_reg;
register double z2_reg;
register boolean recompute_reg;
register double inp_period_reg;
register sample_type width_scale_reg = susp->width->scale;
register sample_block_values_type width_ptr_reg;
register sample_type gain_scale_reg = susp->gain->scale;
register sample_block_values_type gain_ptr_reg;
register sample_type hz_scale_reg = susp->hz->scale;
register sample_block_values_type hz_ptr_reg;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "eqbandvvv_nsss_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_log_samples(input, input_ptr, input_cnt);
togo = min(togo, susp->input_cnt);
/* don't run past the hz input sample block: */
susp_check_term_log_samples(hz, hz_ptr, hz_cnt);
togo = min(togo, susp->hz_cnt);
/* don't run past the gain input sample block: */
susp_check_term_log_samples(gain, gain_ptr, gain_cnt);
togo = min(togo, susp->gain_cnt);
/* don't run past the width input sample block: */
susp_check_term_log_samples(width, width_ptr, width_cnt);
togo = min(togo, susp->width_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
w1_reg = susp->w1;
sw_reg = susp->sw;
cw_reg = susp->cw;
J_reg = susp->J;
gg_reg = susp->gg;
b0_reg = susp->b0;
b1_reg = susp->b1;
b2_reg = susp->b2;
a0_reg = susp->a0;
a1_reg = susp->a1;
a2_reg = susp->a2;
z1_reg = susp->z1;
z2_reg = susp->z2;
recompute_reg = susp->recompute;
inp_period_reg = susp->inp_period;
width_ptr_reg = susp->width_ptr;
gain_ptr_reg = susp->gain_ptr;
hz_ptr_reg = susp->hz_ptr;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
double z0;
w1_reg = PI2 * (hz_scale_reg * *hz_ptr_reg++) * inp_period_reg;
sw_reg = sin(w1_reg);
cw_reg = cos(w1_reg);
b1_reg = -2.0 * cw_reg;
a1_reg = -b1_reg;
J_reg = sqrt((gain_scale_reg * *gain_ptr_reg++));
recompute_reg = true;
recompute_reg = true;
recompute_reg = true;
if (recompute_reg) {
/* a0_reg = 1.0 + gg_reg / J_reg; */
double a_0_recip = J_reg / (J_reg + gg_reg);
recompute_reg = false;
gg_reg = sw_reg * sinh(log_of_2_over_2 *
(width_scale_reg * *width_ptr_reg++) * w1_reg / sw_reg);
b0_reg = (1.0 + gg_reg * J_reg) * a_0_recip;
b1_reg *= a_0_recip;
b2_reg = (1.0 - gg_reg * J_reg) * a_0_recip;
a1_reg *= a_0_recip;
a2_reg = (gg_reg / J_reg - 1.0) * a_0_recip;
}
z0 = *input_ptr_reg++ + a1_reg*z1_reg + a2_reg*z2_reg;
*out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg);
z2_reg = z1_reg; z1_reg = z0;
} while (--n); /* inner loop */
susp->z1 = z1_reg;
susp->z2 = z2_reg;
susp->recompute = recompute_reg;
/* using width_ptr_reg is a bad idea on RS/6000: */
susp->width_ptr += togo;
/* using gain_ptr_reg is a bad idea on RS/6000: */
susp->gain_ptr += togo;
/* using hz_ptr_reg is a bad idea on RS/6000: */
susp->hz_ptr += togo;
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
susp_took(hz_cnt, togo);
susp_took(gain_cnt, togo);
susp_took(width_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* eqbandvvv_nsss_fetch */
void eqbandvvv_niii_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double w1_reg;
register double sw_reg;
register double cw_reg;
register double J_reg;
register double gg_reg;
register double b0_reg;
register double b1_reg;
register double b2_reg;
register double a0_reg;
register double a1_reg;
register double a2_reg;
register double z1_reg;
register double z2_reg;
register boolean recompute_reg;
register double inp_period_reg;
register double width_pHaSe_iNcR_rEg = susp->width_pHaSe_iNcR;
register double width_pHaSe_ReG;
register sample_type width_x1_sample_reg;
register double gain_pHaSe_iNcR_rEg = susp->gain_pHaSe_iNcR;
register double gain_pHaSe_ReG;
register sample_type gain_x1_sample_reg;
register double hz_pHaSe_iNcR_rEg = susp->hz_pHaSe_iNcR;
register double hz_pHaSe_ReG;
register sample_type hz_x1_sample_reg;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "eqbandvvv_niii_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_log_samples(hz, hz_ptr, hz_cnt);
susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);
susp->w1 = PI2 * susp->hz_x1_sample * susp->inp_period;
susp->sw = sin(susp->w1);
susp->cw = cos(susp->w1);
susp->b1 = -2.0 * susp->cw;
susp->a1 = -susp->b1;
susp->recompute = true;
susp_check_term_log_samples(gain, gain_ptr, gain_cnt);
susp->gain_x1_sample = susp_fetch_sample(gain, gain_ptr, gain_cnt);
susp->J = sqrt(susp->gain_x1_sample);
susp->recompute = true;
susp_check_term_log_samples(width, width_ptr, width_cnt);
susp->width_x1_sample = susp_fetch_sample(width, width_ptr, width_cnt);
susp->recompute = true;
}
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_log_samples(input, input_ptr, input_cnt);
togo = min(togo, susp->input_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
w1_reg = susp->w1;
sw_reg = susp->sw;
cw_reg = susp->cw;
J_reg = susp->J;
gg_reg = susp->gg;
b0_reg = susp->b0;
b1_reg = susp->b1;
b2_reg = susp->b2;
a0_reg = susp->a0;
a1_reg = susp->a1;
a2_reg = susp->a2;
z1_reg = susp->z1;
z2_reg = susp->z2;
recompute_reg = susp->recompute;
inp_period_reg = susp->inp_period;
width_pHaSe_ReG = susp->width_pHaSe;
width_x1_sample_reg = susp->width_x1_sample;
gain_pHaSe_ReG = susp->gain_pHaSe;
gain_x1_sample_reg = susp->gain_x1_sample;
hz_pHaSe_ReG = susp->hz_pHaSe;
hz_x1_sample_reg = susp->hz_x1_sample;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
double z0;
if (hz_pHaSe_ReG >= 1.0) {
/* fixup-depends hz */
/* pick up next sample as hz_x1_sample: */
susp->hz_ptr++;
susp_took(hz_cnt, 1);
hz_pHaSe_ReG -= 1.0;
susp_check_term_log_samples_break(hz, hz_ptr, hz_cnt, hz_x1_sample_reg);
hz_x1_sample_reg = susp_current_sample(hz, hz_ptr);
w1_reg = PI2 * hz_x1_sample_reg * inp_period_reg;
sw_reg = sin(w1_reg);
cw_reg = cos(w1_reg);
b1_reg = -2.0 * cw_reg;
a1_reg = -b1_reg;
recompute_reg = true;
}
if (gain_pHaSe_ReG >= 1.0) {
/* fixup-depends gain */
/* pick up next sample as gain_x1_sample: */
susp->gain_ptr++;
susp_took(gain_cnt, 1);
gain_pHaSe_ReG -= 1.0;
susp_check_term_log_samples_break(gain, gain_ptr, gain_cnt, gain_x1_sample_reg);
gain_x1_sample_reg = susp_current_sample(gain, gain_ptr);
J_reg = sqrt(gain_x1_sample_reg);
recompute_reg = true;
}
if (width_pHaSe_ReG >= 1.0) {
/* fixup-depends width */
/* pick up next sample as width_x1_sample: */
susp->width_ptr++;
susp_took(width_cnt, 1);
width_pHaSe_ReG -= 1.0;
susp_check_term_log_samples_break(width, width_ptr, width_cnt, width_x1_sample_reg);
width_x1_sample_reg = susp_current_sample(width, width_ptr);
recompute_reg = true;
}
if (recompute_reg) {
/* a0_reg = 1.0 + gg_reg / J_reg; */
double a_0_recip = J_reg / (J_reg + gg_reg);
recompute_reg = false;
gg_reg = sw_reg * sinh(log_of_2_over_2 *
width_x1_sample_reg * w1_reg / sw_reg);
b0_reg = (1.0 + gg_reg * J_reg) * a_0_recip;
b1_reg *= a_0_recip;
b2_reg = (1.0 - gg_reg * J_reg) * a_0_recip;
a1_reg *= a_0_recip;
a2_reg = (gg_reg / J_reg - 1.0) * a_0_recip;
}
z0 = *input_ptr_reg++ + a1_reg*z1_reg + a2_reg*z2_reg;
*out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg);
z2_reg = z1_reg; z1_reg = z0;
hz_pHaSe_ReG += hz_pHaSe_iNcR_rEg;
gain_pHaSe_ReG += gain_pHaSe_iNcR_rEg;
width_pHaSe_ReG += width_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->z1 = z1_reg;
susp->z2 = z2_reg;
susp->recompute = recompute_reg;
susp->width_pHaSe = width_pHaSe_ReG;
susp->width_x1_sample = width_x1_sample_reg;
susp->gain_pHaSe = gain_pHaSe_ReG;
susp->gain_x1_sample = gain_x1_sample_reg;
susp->hz_pHaSe = hz_pHaSe_ReG;
susp->hz_x1_sample = hz_x1_sample_reg;
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* eqbandvvv_niii_fetch */
void eqbandvvv_nrrr_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type hz_val;
sample_type gain_val;
sample_type width_val;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double cw_reg;
register double b0_reg;
register double b1_reg;
register double b2_reg;
register double a1_reg;
register double a2_reg;
register double z1_reg;
register double z2_reg;
register double inp_period_reg;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "eqbandvvv_nrrr_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->hz_pHaSe = 1.0;
susp->gain_pHaSe = 1.0;
susp->width_pHaSe = 1.0;
}
susp_check_term_log_samples(hz, hz_ptr, hz_cnt);
susp_check_term_log_samples(gain, gain_ptr, gain_cnt);
susp_check_term_log_samples(width, width_ptr, width_cnt);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_log_samples(input, input_ptr, input_cnt);
togo = min(togo, susp->input_cnt);
/* grab next hz_x1_sample when phase goes past 1.0; */
/* use hz_n (computed below) to avoid roundoff errors: */
if (susp->hz_n <= 0) {
susp_check_term_log_samples(hz, hz_ptr, hz_cnt);
susp->hz_x1_sample = susp_fetch_sample(hz, hz_ptr, hz_cnt);
susp->hz_pHaSe -= 1.0;
/* hz_n gets number of samples before phase exceeds 1.0: */
susp->hz_n = (long) ((1.0 - susp->hz_pHaSe) *
susp->output_per_hz);
susp->w1 = PI2 * susp->hz_x1_sample * susp->inp_period;
susp->sw = sin(susp->w1);
susp->cw = cos(susp->w1);
susp->b1 = -2.0 * susp->cw;
susp->a1 = -susp->b1;
susp->recompute = true;
}
togo = min(togo, susp->hz_n);
hz_val = susp->hz_x1_sample;
/* grab next gain_x1_sample when phase goes past 1.0; */
/* use gain_n (computed below) to avoid roundoff errors: */
if (susp->gain_n <= 0) {
susp_check_term_log_samples(gain, gain_ptr, gain_cnt);
susp->gain_x1_sample = susp_fetch_sample(gain, gain_ptr, gain_cnt);
susp->gain_pHaSe -= 1.0;
/* gain_n gets number of samples before phase exceeds 1.0: */
susp->gain_n = (long) ((1.0 - susp->gain_pHaSe) *
susp->output_per_gain);
susp->J = sqrt(susp->gain_x1_sample);
susp->recompute = true;
}
togo = min(togo, susp->gain_n);
gain_val = susp->gain_x1_sample;
/* grab next width_x1_sample when phase goes past 1.0; */
/* use width_n (computed below) to avoid roundoff errors: */
if (susp->width_n <= 0) {
susp_check_term_log_samples(width, width_ptr, width_cnt);
susp->width_x1_sample = susp_fetch_sample(width, width_ptr, width_cnt);
susp->width_pHaSe -= 1.0;
/* width_n gets number of samples before phase exceeds 1.0: */
susp->width_n = (long) ((1.0 - susp->width_pHaSe) *
susp->output_per_width);
susp->recompute = true;
}
togo = min(togo, susp->width_n);
width_val = susp->width_x1_sample;
if (susp->recompute) {
/* susp->a0 = 1.0 + susp->gg / susp->J; */
double a_0_recip = susp->J / (susp->J + susp->gg);
susp->recompute = false;
susp->gg = susp->sw * sinh(log_of_2_over_2 *
width_val * susp->w1 / susp->sw);
susp->b0 = (1.0 + susp->gg * susp->J) * a_0_recip;
susp->b1 *= a_0_recip;
susp->b2 = (1.0 - susp->gg * susp->J) * a_0_recip;
susp->a1 *= a_0_recip;
susp->a2 = (susp->gg / susp->J - 1.0) * a_0_recip;
}
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo < 0) togo = 0; /* avoids rounding errros */
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < 0) to_stop = 0; /* avoids rounding errors */
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
cw_reg = susp->cw;
b0_reg = susp->b0;
b1_reg = susp->b1;
b2_reg = susp->b2;
a1_reg = susp->a1;
a2_reg = susp->a2;
z1_reg = susp->z1;
z2_reg = susp->z2;
inp_period_reg = susp->inp_period;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
double z0;
z0 = *input_ptr_reg++ + a1_reg*z1_reg + a2_reg*z2_reg;
*out_ptr_reg++ = (sample_type) (z0*b0_reg + z1_reg*b1_reg + z2_reg*b2_reg);
z2_reg = z1_reg; z1_reg = z0;
} while (--n); /* inner loop */
susp->z1 = z1_reg;
susp->z2 = z2_reg;
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
susp->hz_pHaSe += togo * susp->hz_pHaSe_iNcR;
susp->hz_n -= togo;
susp->gain_pHaSe += togo * susp->gain_pHaSe_iNcR;
susp->gain_n -= togo;
susp->width_pHaSe += togo * susp->width_pHaSe_iNcR;
susp->width_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* eqbandvvv_nrrr_fetch */
void eqbandvvv_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from input up to final_time for this block of zeros */
while ((round((final_time - susp->input->t0) * susp->input->sr)) >=
susp->input->current)
susp_get_samples(input, input_ptr, input_cnt);
/* fetch samples from hz up to final_time for this block of zeros */
while ((round((final_time - susp->hz->t0) * susp->hz->sr)) >=
susp->hz->current)
susp_get_samples(hz, hz_ptr, hz_cnt);
/* fetch samples from gain up to final_time for this block of zeros */
while ((round((final_time - susp->gain->t0) * susp->gain->sr)) >=
susp->gain->current)
susp_get_samples(gain, gain_ptr, gain_cnt);
/* fetch samples from width up to final_time for this block of zeros */
while ((round((final_time - susp->width->t0) * susp->width->sr)) >=
susp->width->current)
susp_get_samples(width, width_ptr, width_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->input->t0) * susp->input->sr -
(susp->input->current - susp->input_cnt));
susp->input_ptr += n;
susp_took(input_cnt, n);
n = round((final_time - susp->hz->t0) * susp->hz->sr -
(susp->hz->current - susp->hz_cnt));
susp->hz_ptr += n;
susp_took(hz_cnt, n);
n = round((final_time - susp->gain->t0) * susp->gain->sr -
(susp->gain->current - susp->gain_cnt));
susp->gain_ptr += n;
susp_took(gain_cnt, n);
n = round((final_time - susp->width->t0) * susp->width->sr -
(susp->width->current - susp->width_cnt));
susp->width_ptr += n;
susp_took(width_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(a_susp, snd_list);
}
void eqbandvvv_mark(snd_susp_type a_susp)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
sound_xlmark(susp->input);
sound_xlmark(susp->hz);
sound_xlmark(susp->gain);
sound_xlmark(susp->width);
}
void eqbandvvv_free(snd_susp_type a_susp)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
sound_unref(susp->input);
sound_unref(susp->hz);
sound_unref(susp->gain);
sound_unref(susp->width);
ffree_generic(susp, sizeof(eqbandvvv_susp_node), "eqbandvvv_free");
}
void eqbandvvv_print_tree(snd_susp_type a_susp, int n)
{
eqbandvvv_susp_type susp = (eqbandvvv_susp_type) a_susp;
indent(n);
stdputstr("input:");
sound_print_tree_1(susp->input, n);
indent(n);
stdputstr("hz:");
sound_print_tree_1(susp->hz, n);
indent(n);
stdputstr("gain:");
sound_print_tree_1(susp->gain, n);
indent(n);
stdputstr("width:");
sound_print_tree_1(susp->width, n);
}
sound_type snd_make_eqbandvvv(sound_type input, sound_type hz, sound_type gain, sound_type width)
{
register eqbandvvv_susp_type susp;
rate_type sr = input->sr;
time_type t0 = min(min(min(input->t0, hz->t0), gain->t0), width->t0);
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
long lsc;
/* combine scale factors of linear inputs (INPUT) */
scale_factor *= input->scale;
input->scale = 1.0F;
/* try to push scale_factor back to a low sr input */
if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; }
falloc_generic(susp, eqbandvvv_susp_node, "snd_make_eqbandvvv");
susp->inp_scale = input->scale;
susp->w1 = 0.0;
susp->sw = 0.0;
susp->cw = 0.0;
susp->J = 0.0;
susp->gg = 0.0;
susp->b0 = 0.0;
susp->b1 = 0.0;
susp->b2 = 0.0;
susp->a0 = 0.0;
susp->a1 = 0.0;
susp->a2 = 0.0;
susp->z1 = 0.0;
susp->z2 = 0.0;
susp->recompute = false;
susp->inp_period = 1.0 / input->sr;
/* make sure no sample rate is too high */
if (hz->sr > sr) {
sound_unref(hz);
snd_badsr();
}
if (gain->sr > sr) {
sound_unref(gain);
snd_badsr();
}
if (width->sr > sr) {
sound_unref(width);
snd_badsr();
}
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(input, sr);
interp_desc = (interp_desc << 2) + interp_style(hz, sr);
interp_desc = (interp_desc << 2) + interp_style(gain, sr);
interp_desc = (interp_desc << 2) + interp_style(width, sr);
switch (interp_desc) {
case INTERP_nnnn: /* handled below */
case INTERP_nnns: /* handled below */
case INTERP_nnsn: /* handled below */
case INTERP_nnss: /* handled below */
case INTERP_nsnn: /* handled below */
case INTERP_nsns: /* handled below */
case INTERP_nssn: /* handled below */
case INTERP_nsss: susp->susp.fetch = eqbandvvv_nsss_fetch; break;
case INTERP_niii: susp->susp.fetch = eqbandvvv_niii_fetch; break;
case INTERP_nrrr: susp->susp.fetch = eqbandvvv_nrrr_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < input->t0) sound_prepend_zeros(input, t0);
if (t0 < hz->t0) sound_prepend_zeros(hz, t0);
if (t0 < gain->t0) sound_prepend_zeros(gain, t0);
if (t0 < width->t0) sound_prepend_zeros(width, t0);
/* minimum start time over all inputs: */
t0_min = min(input->t0, min(hz->t0, min(gain->t0, min(width->t0, t0))));
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = eqbandvvv_toss_fetch;
}
/* initialize susp state */
susp->susp.free = eqbandvvv_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = eqbandvvv_mark;
susp->susp.print_tree = eqbandvvv_print_tree;
susp->susp.name = "eqbandvvv";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input);
lsc = logical_stop_cnt_cvt(hz);
if (susp->susp.log_stop_cnt > lsc)
susp->susp.log_stop_cnt = lsc;
lsc = logical_stop_cnt_cvt(gain);
if (susp->susp.log_stop_cnt > lsc)
susp->susp.log_stop_cnt = lsc;
lsc = logical_stop_cnt_cvt(width);
if (susp->susp.log_stop_cnt > lsc)
susp->susp.log_stop_cnt = lsc;
susp->started = false;
susp->susp.current = 0;
susp->input = input;
susp->input_cnt = 0;
susp->hz = hz;
susp->hz_cnt = 0;
susp->hz_pHaSe = 0.0;
susp->hz_pHaSe_iNcR = hz->sr / sr;
susp->hz_n = 0;
susp->output_per_hz = sr / hz->sr;
susp->gain = gain;
susp->gain_cnt = 0;
susp->gain_pHaSe = 0.0;
susp->gain_pHaSe_iNcR = gain->sr / sr;
susp->gain_n = 0;
susp->output_per_gain = sr / gain->sr;
susp->width = width;
susp->width_cnt = 0;
susp->width_pHaSe = 0.0;
susp->width_pHaSe_iNcR = width->sr / sr;
susp->width_n = 0;
susp->output_per_width = sr / width->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_eqbandvvv(sound_type input, sound_type hz, sound_type gain, sound_type width)
{
sound_type input_copy = sound_copy(input);
sound_type hz_copy = sound_copy(hz);
sound_type gain_copy = sound_copy(gain);
sound_type width_copy = sound_copy(width);
return snd_make_eqbandvvv(input_copy, hz_copy, gain_copy, width_copy);
}