mirror of
https://github.com/cookiengineer/audacity
synced 2025-06-16 16:10:06 +02:00
359 lines
12 KiB
C
359 lines
12 KiB
C
#include "stdio.h"
|
|
#ifndef mips
|
|
#include "stdlib.h"
|
|
#endif
|
|
#include "xlisp.h"
|
|
#include "sound.h"
|
|
|
|
#include "falloc.h"
|
|
#include "cext.h"
|
|
#include "gate.h"
|
|
|
|
void gate_free(snd_susp_type a_susp);
|
|
|
|
|
|
typedef struct gate_susp_struct {
|
|
snd_susp_node susp;
|
|
long terminate_cnt;
|
|
sound_type signal;
|
|
long signal_cnt;
|
|
sample_block_values_type signal_ptr;
|
|
|
|
double rise_time;
|
|
double fall_time;
|
|
double floor;
|
|
double threshold;
|
|
long on_count;
|
|
long off_count;
|
|
double rise_factor;
|
|
double fall_factor;
|
|
long start_fall;
|
|
long start_rise;
|
|
long stop_count;
|
|
long delay_len;
|
|
int state;
|
|
double value;
|
|
} gate_susp_node, *gate_susp_type;
|
|
|
|
#define ST_HOLD 0
|
|
#define ST_FALL 1
|
|
#define ST_FALL_UNTIL 2
|
|
#define ST_OFF 3
|
|
#define ST_OFF_UNTIL 4
|
|
#define ST_RISE 5
|
|
|
|
/* Overview:
|
|
This operation generates an exponential rise and decay suitable for
|
|
implementing a noise gate. The decay starts when the signal drops
|
|
below threshold and stays there for longer than lookahead.
|
|
Decay continues until the value reaches floor, at which point the
|
|
decay stops and the value is held constant. Either during the decay
|
|
or after the floor is reached, if the signal goes above threshold,
|
|
then the output value will rise to 1.0 (0dB) at the point the
|
|
signal crosses the threshold. Again, lookahead is used, so the rise
|
|
actually starts before the signal crosses the threshold. The rise
|
|
rate is constant and set so that a rise from floor to 0dB occurs
|
|
in the specified risetime. Similarly, the fall rate is constant
|
|
such that a fall from 0dB to the floor takes falltime.
|
|
|
|
Rather than looking ahead, the output actually lags the input by
|
|
lookahead. The caller should advance the time of the input signal
|
|
in order to get a correct output signal, and this will be taken
|
|
care of in Lisp code.
|
|
|
|
The implementation is a finite-state machine that simultaneously
|
|
computes the value and scans ahead for threshold crossings. Time
|
|
points, remembered as sample counts are saved in variables:
|
|
on_count -- the time at which the rise should complete
|
|
off_count -- the time at which the fall should begin
|
|
rise_factor -- multiply by this to get exponential rise
|
|
fall_factor -- multiply by this to get exponential fall
|
|
rise_time -- number of samples for a full rise
|
|
fall_time -- number of samples for a full fall
|
|
floor -- the lowest value to output
|
|
threshold -- compare the signal s to this value
|
|
start_rise -- the sample count at which a rise begins
|
|
delay_len -- number of samples to look ahead, length of buffer
|
|
state -- the current state of finite state machine
|
|
(see the individual 'case' statements for description of states)
|
|
value -- the current output value
|
|
|
|
computing fall_factor:
|
|
factor ^ (sample_rate * time) == floor
|
|
log(factor) * sample_rate * time == log(floor)
|
|
log(factor) == log(floor) / (sample_rate * time)
|
|
factor == exp(log(floor) / (sample_rate * time))
|
|
|
|
*/
|
|
|
|
void compute_start_rise(gate_susp_type susp)
|
|
{
|
|
/* to compute when to start rise to achieve 0dB at on_count:
|
|
By similar triangles:
|
|
truncated rise time truncated fall time
|
|
------------------- == -------------------
|
|
full rise time full fall time
|
|
when you enter ST_FALL, set start_fall = now
|
|
then if (on_count - start_fall) < (rise_time + fall_time)
|
|
then start rise at
|
|
on_time - rise_time * (on_count-start_fall)/(rise_time+fall_time)
|
|
*/
|
|
long total = (long) (susp->rise_time + susp->fall_time);
|
|
if ((susp->on_count - susp->start_fall) < total) {
|
|
susp->start_rise = (long) (susp->on_count -
|
|
(susp->rise_time * susp->on_count - susp->start_fall) / total);
|
|
} else susp->start_rise = (long) (susp->on_count - susp->rise_time);
|
|
}
|
|
|
|
|
|
void gate_n_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
gate_susp_type susp = (gate_susp_type) a_susp;
|
|
int cnt = 0; /* how many samples computed */
|
|
int togo;
|
|
int n;
|
|
sample_block_type out;
|
|
register sample_block_values_type out_ptr;
|
|
|
|
register sample_block_values_type out_ptr_reg;
|
|
|
|
register double threshold_reg;
|
|
register long off_count_reg;
|
|
register long stop_count_reg;
|
|
register long delay_len_reg;
|
|
register int state_reg;
|
|
register double value_reg;
|
|
register sample_block_values_type signal_ptr_reg;
|
|
falloc_sample_block(out, "gate_n_fetch");
|
|
out_ptr = out->samples;
|
|
snd_list->block = out;
|
|
|
|
while (cnt < max_sample_block_len) { /* outer loop */
|
|
/* first compute how many samples to generate in inner loop: */
|
|
/* don't overflow the output sample block: */
|
|
togo = max_sample_block_len - cnt;
|
|
|
|
/* don't run past the signal input sample block: */
|
|
susp_check_term_samples(signal, signal_ptr, signal_cnt);
|
|
togo = min(togo, susp->signal_cnt);
|
|
|
|
/* don't run past terminate time */
|
|
if (susp->terminate_cnt != UNKNOWN &&
|
|
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
|
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
|
if (togo < 0) togo = 0; /* avoids rounding errros */
|
|
if (togo == 0) break;
|
|
}
|
|
|
|
n = togo;
|
|
threshold_reg = susp->threshold;
|
|
off_count_reg = susp->off_count;
|
|
stop_count_reg = susp->stop_count;
|
|
delay_len_reg = susp->delay_len;
|
|
state_reg = susp->state;
|
|
value_reg = susp->value;
|
|
signal_ptr_reg = susp->signal_ptr;
|
|
out_ptr_reg = out_ptr;
|
|
if (n) do { /* the inner sample computation loop */
|
|
{
|
|
sample_type future = *signal_ptr_reg++;
|
|
long now = susp->susp.current + cnt + togo - n;
|
|
|
|
switch (state_reg) {
|
|
/* hold at 1.0 and look for the moment to begin fall: */
|
|
case ST_HOLD:
|
|
if (future >= threshold_reg) {
|
|
off_count_reg = now + delay_len_reg;
|
|
} else if (now >= off_count_reg) {
|
|
state_reg = ST_FALL;
|
|
stop_count_reg = (long) (now + susp->fall_time);
|
|
susp->start_fall = now;
|
|
}
|
|
break;
|
|
/* fall until stop_count_reg while looking for next rise time */
|
|
case ST_FALL:
|
|
if (future >= threshold_reg) {
|
|
off_count_reg = susp->on_count = now + delay_len_reg;
|
|
compute_start_rise(susp);
|
|
state_reg = ST_FALL_UNTIL;
|
|
} else if (now == stop_count_reg) {
|
|
state_reg = ST_OFF;
|
|
value_reg = susp->floor;
|
|
} else value_reg *= susp->fall_factor;
|
|
break;
|
|
/* fall until start_rise while looking for next fall time */
|
|
case ST_FALL_UNTIL:
|
|
value_reg *= susp->fall_factor;
|
|
if (future >= threshold_reg) {
|
|
off_count_reg = now + delay_len_reg;
|
|
}
|
|
if (now >= susp->start_rise) {
|
|
state_reg = ST_RISE;
|
|
} else if (now >= stop_count_reg) {
|
|
state_reg = ST_OFF_UNTIL;
|
|
value_reg = susp->floor;
|
|
}
|
|
break;
|
|
/* hold at floor (minimum value_reg) and look for next rise time */
|
|
case ST_OFF:
|
|
if (future >= threshold_reg) {
|
|
off_count_reg = susp->on_count = now + delay_len_reg;
|
|
compute_start_rise(susp);
|
|
state_reg = ST_OFF_UNTIL;
|
|
}
|
|
break;
|
|
/* hold at floor until start_rise while looking for next fall time */
|
|
case ST_OFF_UNTIL:
|
|
if (future >= threshold_reg) {
|
|
off_count_reg = now + delay_len_reg;
|
|
}
|
|
if (now >= susp->start_rise) {
|
|
state_reg = ST_RISE;
|
|
}
|
|
break;
|
|
/* rise while looking for fall time */
|
|
case ST_RISE:
|
|
value_reg *= susp->rise_factor;
|
|
if (future >= threshold_reg) {
|
|
off_count_reg = now + delay_len_reg;
|
|
}
|
|
if (now >= susp->on_count) {
|
|
value_reg = 1.0;
|
|
state_reg = ST_HOLD;
|
|
}
|
|
break;
|
|
}
|
|
*out_ptr_reg++ = (sample_type) value_reg;
|
|
};
|
|
} while (--n); /* inner loop */
|
|
|
|
togo -= n;
|
|
susp->off_count = off_count_reg;
|
|
susp->stop_count = stop_count_reg;
|
|
susp->state = state_reg;
|
|
susp->value = value_reg;
|
|
/* using signal_ptr_reg is a bad idea on RS/6000: */
|
|
susp->signal_ptr += togo;
|
|
out_ptr += togo;
|
|
susp_took(signal_cnt, togo);
|
|
cnt += togo;
|
|
} /* outer loop */
|
|
|
|
/* test for termination */
|
|
if (togo == 0 && cnt == 0) {
|
|
snd_list_terminate(snd_list);
|
|
} else {
|
|
snd_list->block_len = cnt;
|
|
susp->susp.current += cnt;
|
|
}
|
|
} /* gate_n_fetch */
|
|
|
|
|
|
void gate_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
|
{
|
|
gate_susp_type susp = (gate_susp_type) a_susp;
|
|
time_type final_time = susp->susp.t0;
|
|
long n;
|
|
|
|
/* fetch samples from signal up to final_time for this block of zeros */
|
|
while ((round((final_time - susp->signal->t0) * susp->signal->sr)) >=
|
|
susp->signal->current)
|
|
susp_get_samples(signal, signal_ptr, signal_cnt);
|
|
/* convert to normal processing when we hit final_count */
|
|
/* we want each signal positioned at final_time */
|
|
n = round((final_time - susp->signal->t0) * susp->signal->sr -
|
|
(susp->signal->current - susp->signal_cnt));
|
|
susp->signal_ptr += n;
|
|
susp_took(signal_cnt, n);
|
|
susp->susp.fetch = susp->susp.keep_fetch;
|
|
(*(susp->susp.fetch))(a_susp, snd_list);
|
|
}
|
|
|
|
|
|
void gate_mark(snd_susp_type a_susp)
|
|
{
|
|
gate_susp_type susp = (gate_susp_type) a_susp;
|
|
sound_xlmark(susp->signal);
|
|
}
|
|
|
|
|
|
void gate_free(snd_susp_type a_susp)
|
|
{
|
|
gate_susp_type susp = (gate_susp_type) a_susp;
|
|
sound_unref(susp->signal);
|
|
ffree_generic(susp, sizeof(gate_susp_node), "gate_free");
|
|
}
|
|
|
|
|
|
void gate_print_tree(snd_susp_type a_susp, int n)
|
|
{
|
|
gate_susp_type susp = (gate_susp_type) a_susp;
|
|
indent(n);
|
|
stdputstr("signal:");
|
|
sound_print_tree_1(susp->signal, n);
|
|
}
|
|
|
|
|
|
sound_type snd_make_gate(sound_type signal, time_type lookahead, double risetime, double falltime, double floor, double threshold)
|
|
{
|
|
register gate_susp_type susp;
|
|
rate_type sr = signal->sr;
|
|
time_type t0 = signal->t0;
|
|
sample_type scale_factor = 1.0F;
|
|
time_type t0_min = t0;
|
|
/* combine scale factors of linear inputs (SIGNAL) */
|
|
scale_factor *= signal->scale;
|
|
signal->scale = 1.0F;
|
|
|
|
/* try to push scale_factor back to a low sr input */
|
|
if (signal->sr < sr) { signal->scale = scale_factor; scale_factor = 1.0F; }
|
|
|
|
falloc_generic(susp, gate_susp_node, "snd_make_gate");
|
|
susp->rise_time = signal->sr * risetime + 0.5;
|
|
susp->fall_time = signal->sr * falltime + 0.5;
|
|
susp->floor = floor; floor = log(floor);;
|
|
susp->threshold = threshold;
|
|
susp->on_count = 0;
|
|
susp->off_count = 0;
|
|
susp->rise_factor = exp(- floor / susp->rise_time);
|
|
susp->fall_factor = exp(floor / susp->fall_time);
|
|
susp->start_fall = 0;
|
|
susp->start_rise = 0;
|
|
susp->stop_count = 0;
|
|
susp->delay_len = max(1, round(signal->sr * lookahead));
|
|
susp->state = ST_OFF;
|
|
susp->value = susp->floor;
|
|
susp->susp.fetch = gate_n_fetch;
|
|
susp->terminate_cnt = UNKNOWN;
|
|
/* handle unequal start times, if any */
|
|
if (t0 < signal->t0) sound_prepend_zeros(signal, t0);
|
|
/* minimum start time over all inputs: */
|
|
t0_min = min(signal->t0, t0);
|
|
/* how many samples to toss before t0: */
|
|
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
|
|
if (susp->susp.toss_cnt > 0) {
|
|
susp->susp.keep_fetch = susp->susp.fetch;
|
|
susp->susp.fetch = gate_toss_fetch;
|
|
}
|
|
|
|
/* initialize susp state */
|
|
susp->susp.free = gate_free;
|
|
susp->susp.sr = sr;
|
|
susp->susp.t0 = t0;
|
|
susp->susp.mark = gate_mark;
|
|
susp->susp.print_tree = gate_print_tree;
|
|
susp->susp.name = "gate";
|
|
susp->susp.log_stop_cnt = UNKNOWN;
|
|
susp->susp.current = 0;
|
|
susp->signal = signal;
|
|
susp->signal_cnt = 0;
|
|
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
|
|
}
|
|
|
|
|
|
sound_type snd_gate(sound_type signal, time_type lookahead, double risetime, double falltime, double floor, double threshold)
|
|
{
|
|
sound_type signal_copy = sound_copy(signal);
|
|
return snd_make_gate(signal_copy, lookahead, risetime, falltime, floor, threshold);
|
|
}
|