1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-04-30 15:49:41 +02:00
audacity/tests/octave/loudness_test.m
Max Maisel 17ef5b1c75 Fix two bugs in loudness effect (#410)
* Calculate loudness for short or silent selections as well.

In case of selections shorter than 400ms (one momentary loudness block),
take what we have got and divide only be the actual length.

Abort loudness normalization silently if the selected audio is all
silent.

* Fix loudness effect bug when selection includes a gap.

If the selected audio in a track contained a gap between two clips,
an incorrect amount of samples was processed.
2020-01-24 18:04:19 +00:00

292 lines
10 KiB
Matlab

## Audacity Loudness effect unit test
#
# Max Maisel
#
# This tests the Loudness effect with 30 seconds long pseudo-random stereo
# noise sequences. The test sequences have different amplitudes per
# channel and sometimes a DC component. For best test coverage, irrelevant
# parameters for the current operation are randomly varied.
#
printf("Running Loudness effect tests.\n");
printf("This requires the octave-forge-signal package to be installed.\n");
pkg load signal;
EXPORT_TEST_SIGNALS = true;
TEST_LUFS_HELPER = true;
# LUFS need a higher epsilon because they are a logarithmic unit.
LUFS_epsilon = 0.02;
# A straightforward and simple LUFS implementation which can
# be easily compared with the specification ITU-R BS.1770-4.
function [gated_lufs] = calc_LUFS(x, fs)
# HSF
f0 = 38.13547087602444;
Q = 0.5003270373238773;
K = tan(pi * f0 / fs);
rb0 = 1.0;
rb1 = -2.0;
rb2 = 1.0;
ra0 = 1.0;
ra1 = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
ra2 = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
rb = [rb0 rb1 rb2];
ra = [ra0 ra1 ra2];
# HPF
db = 3.999843853973347;
f0 = 1681.974450955533;
Q = 0.7071752369554196;
K = tan(pi * f0 / fs);
Vh = power(10.0, db / 20.0);
Vb = power(Vh, 0.4996667741545416);
pa0 = 1.0;
a0 = 1.0 + K / Q + K * K;
pb0 = (Vh + Vb * K / Q + K * K) / a0;
pb1 = 2.0 * (K * K - Vh) / a0;
pb2 = (Vh - Vb * K / Q + K * K) / a0;
pa1 = 2.0 * (K * K - 1.0) / a0;
pa2 = (1.0 - K / Q + K * K) / a0;
pb = [pb0 pb1 pb2];
pa = [pa0 pa1 pa2];
# Apply k-weighting
x = filter(rb, ra, x, [], 1);
x = filter(pb, pa, x, [], 1);
# - gating blocks (every 100 ms over 400 ms)
block_size = 0.4*fs;
block_overlap = 0.3*fs;
block_count = floor((size(x)(1)-block_size)/(block_size-block_overlap))+1+1;
x_blocked = zeros(block_size, block_count, size(x)(2));
for i=1:1:size(x)(2)
x_blocked(:,:,i) = buffer(x(:,i), block_size, 0.3*fs, 'nodelay');
end
lufs_blocked = 1/(block_size)*sum(x_blocked.^2, 1);
lufs_blocked = sum(lufs_blocked, 3);
# Apply absolute threshold
GAMMA_A = -70;
lufs_blocked = -0.691 + 10*log10(lufs_blocked);
valid_blocks = length(lufs_blocked);
valid_blocks = valid_blocks - length(lufs_blocked(lufs_blocked < GAMMA_A));
lufs_blocked(lufs_blocked < GAMMA_A) = -100;
lufs_blocked = 10.^((lufs_blocked+0.691)/10);
# Apply relative threshold
GAMMA_R = -0.691 + 10*log10(sum(lufs_blocked)/valid_blocks) - 10;
lufs_blocked = -0.691 + 10*log10(lufs_blocked);
valid_blocks = length(lufs_blocked);
valid_blocks = valid_blocks - length(lufs_blocked(lufs_blocked < GAMMA_R));
lufs_blocked(lufs_blocked < GAMMA_R) = -100;
lufs_blocked = 10.^((lufs_blocked+0.691)/10);
hold off
gated_lufs = -0.691 + 10*log10(sum(lufs_blocked)/valid_blocks);
end
if TEST_LUFS_HELPER
printf("Running calc_LUFS() selftest.\n");
printf("Compare the following results with a trusted LUFS calculator.\n");
fs = 44100;
k = 1:1:60*fs;
x = 0.3*sin(2*pi*1000/fs*k) + 0.2*sin(2*pi*1200/fs*k);
x = (x .* [1:1:30*fs, 30*fs:-1:1]./60./fs).';
audiowrite(cstrcat(pwd(), "/LUFS-selftest1.wav"), x, fs);
printf("LUFS-selftest1.wav should be %f LUFS\n", calc_LUFS(x, fs));
randn("seed", 1);
x = [0.2*randn(2, 10*fs) zeros(2, 10*fs) 0.1*randn(2, 10*fs)].';
x(:,1) = x(:,1) * 0.4 + 0.2;
audiowrite(cstrcat(pwd(), "/LUFS-selftest2.wav"), x, fs);
printf("LUFS-selftest2.wav should be %f LUFS\n", calc_LUFS(x, fs));
fs = 8000;
randn("seed", 2);
x = [0.2*randn(2, 10*fs) zeros(2, 10*fs) 0.1*randn(2, 10*fs)].';
x(:,1) = x(:,1) * 0.6 - 0.1;
# MMM: I'm not sure how trustworthy free loudness meters are
# in case of non-standard sample rates.
audiowrite(cstrcat(pwd(), "/LUFS-selftest3.wav"), x, fs);
printf("LUFS-selftest3.wav should be %f LUFS\n", calc_LUFS(x, fs));
end
## Test Loudness LUFS mode: block to short and all silent
CURRENT_TEST = "Loudness LUFS mode, short silent block";
fs= 44100;
x = zeros(ceil(fs*0.35), 2);
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-silence-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(y, x, "identity");
## Test Loudness LUFS mode: stereo dependent
CURRENT_TEST = "Loudness LUFS mode, keep DC and stereo balance";
randn("seed", 1);
# Include some silence in the test signal to test loudness gating
# and vary the overall loudness over time.
x = [0.1*randn(15*fs, 2).', zeros(5*fs, 2).', 0.1*randn(15*fs, 2).'].';
x(:,1) = x(:,1) .* sin(2*pi/fs/35*(1:1:35*fs)).' .* 1.2;
x(:,2) = x(:,2) .* sin(2*pi/fs/35*(1:1:35*fs)).';
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-stereo-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -23, "loudness", LUFS_epsilon);
do_test_neq(calc_LUFS(y(:,1), fs), calc_LUFS(y(:,2), fs), "stereo balance", 1);
## Test Loudness LUFS mode, stereo independent
CURRENT_TEST = "Loudness LUFS mode, stereo independence";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=0 NormalizeTo=0 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
# Independently processed stereo channels have half the target loudness.
do_test_equ(calc_LUFS(y(:,1), fs), -26, "channel 1 loudness", LUFS_epsilon);
do_test_equ(calc_LUFS(y(:,2), fs), -26, "channel 2 loudness", LUFS_epsilon);
## Test Loudness LUFS mode: mono as mono
CURRENT_TEST = "Test Loudness LUFS mode: mono as mono";
x = x(:,1);
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-mono-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-26 DualMono=0 NormalizeTo=0 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -26, "loudness", LUFS_epsilon);
## Test Loudness LUFS mode: mono as dual-mono
CURRENT_TEST = "Test Loudness LUFS mode: mono as dual-mono";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-26 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);
# This shall be 3 LU quieter as it is compared to strict spec.
do_test_equ(calc_LUFS(y, fs), -29, "loudness", LUFS_epsilon);
## Test Loudness LUFS mode: multi-rate project
CURRENT_TEST = "Test Loudness LUFS mode: multi-rate project";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
randn("seed", 2);
fs1= 8000;
x1 = [0.2*randn(2, 10*fs1) zeros(2, 10*fs1) 0.1*randn(2, 10*fs1)].';
x1(:,1) = x1(:,1) * 0.6;
audiowrite(TMP_FILENAME, x1, fs1);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-stereo-test-8kHz.wav"), x1, fs1);
end
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-30 DualMono=0 NormalizeTo=0 StereoIndependent=0\n");
select_tracks(0, 1);
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);
select_tracks(1, 1);
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y1 = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -30, "loudness track 1", LUFS_epsilon);
# XXX: Audacity does not export at 8kHz through scripting thus this test is expected to fail!
# To ensure that this works you have to set the project rate to 8 kHz,
# export the track and check the results manually.
do_test_equ(calc_LUFS(y1, fs1), -30, "loudness track 2", LUFS_epsilon, true);
# No stereo balance check for track 1 - it's a mono track.
do_test_neq(calc_LUFS(y1(:,1), fs), calc_LUFS(y1(:,2), fs), "stereo balance track 2", LUFS_epsilon);
## Test Loudness RMS mode: stereo independent
CURRENT_TEST = "Loudness RMS mode, stereo independent";
randn("seed", 1);
fs= 44100;
x = 0.1*randn(30*fs, 2);
x(:,1) = x(:,1) * 0.6;
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-RMS-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: RMSLevel=-20 DualMono=0 NormalizeTo=1 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(20*log10(sqrt(sum(y(:,1).*y(:,1)/length(y)))), -20, "channel 1 RMS");
do_test_equ(20*log10(sqrt(sum(y(:,2).*y(:,2)/length(y)))), -20, "channel 2 RMS");
## Test Loudness RMS mode: stereo dependent
CURRENT_TEST = "Loudness RMS mode, stereo dependent";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: RMSLevel=-22 DualMono=1 NormalizeTo=1 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
# Stereo RMS must be calculated in quadratic domain.
do_test_equ(20*log10(sqrt(sum(rms(y).^2)/size(y)(2))), -22, "RMS");
do_test_neq(20*log10(rms(y(:,1))), 20*log10(rms(y(:,2))), "stereo balance", 1);