1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-13 15:38:56 +02:00
2015-05-04 12:42:27 -05:00

301 lines
9.4 KiB
C

/* convolve.c -- implements (non-"fast") convolution */
/*
* Note: this code is mostly generated by translate.lsp (see convole.tran
* in the tran directory), but it has been modified by hand to extend the
* stop time to include the "tail" of the convolution beyond the length
* of the first parameter.
*/
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "convolve.h"
void convolve_free();
typedef struct convolve_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type x_snd;
long x_snd_cnt;
sample_block_values_type x_snd_ptr;
table_type table;
sample_type *h_buf;
double length_of_h;
long h_len;
long x_buf_len;
sample_type *x_buffer_pointer;
sample_type *x_buffer_current;
} convolve_susp_node, *convolve_susp_type;
void h_reverse(sample_type *h, long len)
{
sample_type temp;
int i;
for (i = 0; i < len; i++) {
temp = h[i];
h[i] = h[len - 1];
h[len - 1] = temp;
len--;
}
}
void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_type * h_buf_reg;
register long h_len_reg;
register long x_buf_len_reg;
register sample_type * x_buffer_pointer_reg;
register sample_type * x_buffer_current_reg;
register sample_type x_snd_scale_reg = susp->x_snd->scale;
register sample_block_values_type x_snd_ptr_reg;
falloc_sample_block(out, "convolve_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the x_snd input sample block: */
/* based on susp_check_term_log_samples, but offset by h_len */
/* THIS IS EXPANDED BELOW
* susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt);
*/
if (susp->x_snd_cnt == 0) {
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
/* THIS IS EXPANDED BELOW
*logical_stop_test(x_snd, susp->x_snd_cnt);
*/
if (susp->x_snd->logical_stop_cnt ==
susp->x_snd->current - susp->x_snd_cnt) {
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt);
}
/* THIS IS EXPANDED BELOW
* terminate_test(x_snd_ptr, x_snd, susp->x_snd_cnt);
*/
if (susp->x_snd_ptr == zero_block->samples) {
/* ### modify this to terminate at an offset of (susp->h_len) */
/* Note: in the min_cnt function, susp->x_snd_cnt is *subtracted*
* from susp->x_snd->current to form the terminate time, so to
* increase the time, we need to *subtract* susp->h_len, which
* due to the double negative, *adds* susp->h_len to the ultimate
* terminate time calculation.
*/
min_cnt(&susp->terminate_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt - susp->h_len);
}
}
togo = min(togo, susp->x_snd_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
h_buf_reg = susp->h_buf;
h_len_reg = susp->h_len;
x_buf_len_reg = susp->x_buf_len;
x_buffer_pointer_reg = susp->x_buffer_pointer;
x_buffer_current_reg = susp->x_buffer_current;
x_snd_ptr_reg = susp->x_snd_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long i; double sum;
/* see if we've reached end of x_buffer */
if ((x_buffer_pointer_reg + x_buf_len_reg) <= (x_buffer_current_reg + h_len_reg)) {
/* shift x_buffer from current back to base */
for (i = 1; i < h_len_reg; i++) {
x_buffer_pointer_reg[i-1] = x_buffer_current_reg[i];
}
/* this will be incremented back to x_buffer_pointer_reg below */
x_buffer_current_reg = x_buffer_pointer_reg - 1;
}
x_buffer_current_reg++;
x_buffer_current_reg[h_len_reg - 1] = (x_snd_scale_reg * *x_snd_ptr_reg++);
sum = 0.0;
for (i = 0; i < h_len_reg; i++) {
sum += x_buffer_current_reg[i] * h_buf_reg[i];
}
*out_ptr_reg++ = (sample_type) sum;
} while (--n); /* inner loop */
susp->x_buffer_pointer = x_buffer_pointer_reg;
susp->x_buffer_current = x_buffer_current_reg;
/* using x_snd_ptr_reg is a bad idea on RS/6000: */
susp->x_snd_ptr += togo;
out_ptr += togo;
susp_took(x_snd_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* convolve_s_fetch */
void convolve_toss_fetch(susp, snd_list)
register convolve_susp_type susp;
snd_list_type snd_list;
{
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from x_snd up to final_time for this block of zeros */
while ((round((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >=
susp->x_snd->current)
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr -
(susp->x_snd->current - susp->x_snd_cnt));
susp->x_snd_ptr += n;
susp_took(x_snd_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void convolve_mark(convolve_susp_type susp)
{
sound_xlmark(susp->x_snd);
}
void convolve_free(convolve_susp_type susp)
{
table_unref(susp->table);
free(susp->x_buffer_pointer); sound_unref(susp->x_snd);
ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
}
void convolve_print_tree(convolve_susp_type susp, int n)
{
indent(n);
stdputstr("x_snd:");
sound_print_tree_1(susp->x_snd, n);
}
sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
{
register convolve_susp_type susp;
rate_type sr = x_snd->sr;
time_type t0 = x_snd->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
susp->table = sound_to_table(h_snd);
susp->h_buf = susp->table->samples;
susp->length_of_h = susp->table->length;
susp->h_len = (long) susp->length_of_h;
h_reverse(susp->h_buf, susp->h_len);
susp->x_buf_len = 2 * susp->h_len;
susp->x_buffer_pointer = calloc((2 * (susp->h_len)), sizeof(float));
susp->x_buffer_current = susp->x_buffer_pointer;
susp->susp.fetch = convolve_s_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);
/* minimum start time over all inputs: */
t0_min = min(x_snd->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = convolve_toss_fetch;
}
/* initialize susp state */
susp->susp.free = convolve_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = convolve_mark;
susp->susp.print_tree = convolve_print_tree;
susp->susp.name = "convolve";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd);
susp->susp.current = 0;
susp->x_snd = x_snd;
susp->x_snd_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_convolve(sound_type x_snd, sound_type h_snd)
{
sound_type x_snd_copy = sound_copy(x_snd);
return snd_make_convolve(x_snd_copy, h_snd);
}