mirror of
https://github.com/cookiengineer/audacity
synced 2025-04-30 07:39:42 +02:00
Add `locale/en.po` file. Add English to `locale/LINGUAS` list. Partially duplicate `msgid`s to `msgstr`s in English locale enable eventual key `msgid` changes Replace former project name with Tenacity in English locale. Replace former project website with Tenacity compatible usages in English locale. Modify `AboutDialog.h` by renaming variables. Modify `AboutDialog.cpp` by replacing usage of pre-fork name in Strings. Modify AddBuildInfoRow methods to be static in About dialog. Make License text const in About dialog. Make pre-fork credits different in About dialog. Begin adding Tenacity specific credits Macros starting with `__` are reserved, so I removed the `__` on the About Dialog guard macro. Remove `AboutDialog::` from usage of `Role` in `AboutDialog.h` Refactor overly long generator method into separate methods in `AboutDialog.(h|cpp)` Begin adding Tenacity developer information Cleanup layout of `AboutDialog.h` and `AboutDialog.cpp` Add `safedelete` macro to compliment odd `safenew` macro Add `enum` to `ShuttleGui.cpp` to make it more clear what `Prop` method is doing. Remove a ton of pointless and/or redunant `#ifdef` usage Remove pointless singleton in AboutDialog Make AboutDialog modal on MacOS Fix reference type use of `auto` in `AudacityApp` b/c it makes unintentional copy. Update XPM and PNG images using Tenacity assets Update ICO images using Tenacity assets. Fix Windows resource script that improperly used `winuser.h` import. Add `*.aps` to gitignore to prevent IDE RC pre-load file from being committed. Add default values for pre-processor constants in `tenacity.rc`. Make changes needed for `Tenacity.exe` binary Add 8x8 PNG to Windows ICO files Replace project name in various CMake and CPack file. Replace project name in various directory structures. Replace project name in various OS-specific build files. Replace project name in various documentation files. Update the PO and POT files using the script. Fix places where a `.desktop` file was used on Linux. Replace title of project windows. Make splash screen click through to `tenacityaudio.org`. Remove ® from `AboutDialog.cpp` Modify copyright message in `AboutDialog.cpp` Signed-off-by: Emily Mabrey <emilymabrey93@gmail.com>
639 lines
17 KiB
C++
639 lines
17 KiB
C++
#ifndef __AUDACITY_MEMORY_X_H__
|
|
#define __AUDACITY_MEMORY_X_H__
|
|
|
|
// C++ standard header <memory> with a few extensions
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <new> // align_val_t and hardware_destructive_interference_size
|
|
#include <cstdlib> // Needed for free.
|
|
|
|
#ifndef safenew
|
|
#define safenew new
|
|
#endif
|
|
|
|
#ifndef safedelete
|
|
#define safedelete(x) if(x != NULL){ delete x; x = NULL;}
|
|
#endif
|
|
|
|
#include <functional>
|
|
#include <limits>
|
|
|
|
/*
|
|
* ArrayOf<X>
|
|
* Not to be confused with std::array (which takes a fixed size) or std::vector
|
|
* This maintains a pointer allocated by NEW X[]. It's cheap: only one pointer,
|
|
* with no size and capacity information for resizing as for vector, and if X is
|
|
* a built-in numeric or pointer type, by default there is no zero filling at
|
|
* allocation time.
|
|
*/
|
|
|
|
template<typename X>
|
|
class ArrayOf : public std::unique_ptr<X[]>
|
|
{
|
|
public:
|
|
ArrayOf() {}
|
|
|
|
template<typename Integral>
|
|
explicit ArrayOf(Integral count, bool initialize = false)
|
|
{
|
|
static_assert(std::is_unsigned<Integral>::value, "Unsigned arguments only");
|
|
reinit(count, initialize);
|
|
}
|
|
|
|
//ArrayOf(const ArrayOf&) PROHIBITED;
|
|
ArrayOf(const ArrayOf&) = delete;
|
|
ArrayOf(ArrayOf&& that)
|
|
: std::unique_ptr < X[] >
|
|
(std::move((std::unique_ptr < X[] >&)(that)))
|
|
{
|
|
}
|
|
ArrayOf& operator= (ArrayOf &&that)
|
|
{
|
|
std::unique_ptr<X[]>::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
ArrayOf& operator= (std::unique_ptr<X[]> &&that)
|
|
{
|
|
std::unique_ptr<X[]>::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
|
|
template< typename Integral >
|
|
void reinit(Integral count,
|
|
bool initialize = false)
|
|
{
|
|
static_assert(std::is_unsigned<Integral>::value, "Unsigned arguments only");
|
|
if (initialize)
|
|
// Initialize elements (usually, to zero for a numerical type)
|
|
std::unique_ptr<X[]>::reset(safenew X[count]{});
|
|
else
|
|
// Avoid the slight initialization overhead
|
|
std::unique_ptr<X[]>::reset(safenew X[count]);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\class ArrayOf
|
|
|
|
ArraysOf<X>
|
|
|
|
\brief This simplifies arrays of arrays, each array separately allocated with NEW[]
|
|
But it might be better to use std::Array<ArrayOf<X>, N> for some small constant N
|
|
Or use just one array when sub-arrays have a common size and are not large.
|
|
*/
|
|
template<typename X>
|
|
class ArraysOf : public ArrayOf<ArrayOf<X>>
|
|
{
|
|
public:
|
|
ArraysOf() {}
|
|
|
|
template<typename Integral>
|
|
explicit ArraysOf(Integral N)
|
|
: ArrayOf<ArrayOf<X>>( N )
|
|
{}
|
|
|
|
template<typename Integral1, typename Integral2 >
|
|
ArraysOf(Integral1 N, Integral2 M, bool initialize = false)
|
|
: ArrayOf<ArrayOf<X>>( N )
|
|
{
|
|
static_assert(std::is_unsigned<Integral1>::value, "Unsigned arguments only");
|
|
static_assert(std::is_unsigned<Integral2>::value, "Unsigned arguments only");
|
|
for (size_t ii = 0; ii < N; ++ii)
|
|
(*this)[ii] = ArrayOf<X>{ M, initialize };
|
|
}
|
|
|
|
//ArraysOf(const ArraysOf&) PROHIBITED;
|
|
ArraysOf(const ArraysOf&) =delete;
|
|
ArraysOf& operator= (ArraysOf&& that)
|
|
{
|
|
ArrayOf<ArrayOf<X>>::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
|
|
template< typename Integral >
|
|
void reinit(Integral count)
|
|
{
|
|
ArrayOf<ArrayOf<X>>::reinit( count );
|
|
}
|
|
|
|
template< typename Integral >
|
|
void reinit(Integral count, bool initialize)
|
|
{
|
|
ArrayOf<ArrayOf<X>>::reinit( count, initialize );
|
|
}
|
|
|
|
template<typename Integral1, typename Integral2 >
|
|
void reinit(Integral1 countN, Integral2 countM, bool initialize = false)
|
|
{
|
|
static_assert(std::is_unsigned<Integral1>::value, "Unsigned arguments only");
|
|
static_assert(std::is_unsigned<Integral2>::value, "Unsigned arguments only");
|
|
reinit(countN, false);
|
|
for (size_t ii = 0; ii < countN; ++ii)
|
|
(*this)[ii].reinit(countM, initialize);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\class Optional
|
|
\brief Like a smart pointer, allows for object to not exist (nullptr)
|
|
\brief emulating some of std::optional of C++17
|
|
|
|
template class Optional<X>
|
|
Can be used for monomorphic objects that are stack-allocable, but only conditionally constructed.
|
|
You might also use it as a member.
|
|
Initialize with emplace(), then use like a smart pointer,
|
|
with *, ->, reset(), or in if()
|
|
*/
|
|
|
|
template<typename X>
|
|
class Optional {
|
|
public:
|
|
|
|
using value_type = X;
|
|
|
|
// Construct as NULL
|
|
Optional() {}
|
|
|
|
// Supply the copy and move, so you might use this as a class member too
|
|
Optional(const Optional &that)
|
|
{
|
|
if (that)
|
|
emplace(*that);
|
|
}
|
|
|
|
Optional& operator= (const Optional &that)
|
|
{
|
|
if (this != &that) {
|
|
if (that)
|
|
emplace(*that);
|
|
else
|
|
reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Optional(Optional &&that)
|
|
{
|
|
if (that)
|
|
emplace(::std::move(*that));
|
|
}
|
|
|
|
Optional& operator= (Optional &&that)
|
|
{
|
|
if (this != &that) {
|
|
if (that)
|
|
emplace(::std::move(*that));
|
|
else
|
|
reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Make an object in the buffer, passing constructor arguments,
|
|
/// but destroying any previous object first
|
|
/// Note that if constructor throws, we remain in a consistent
|
|
/// NULL state -- giving exception safety but only weakly
|
|
/// (previous value was lost if present)
|
|
template<typename... Args>
|
|
X& emplace(Args&&... args)
|
|
{
|
|
// Lose any old value
|
|
reset();
|
|
// emplace NEW value
|
|
pp = safenew(address()) X(std::forward<Args>(args)...);
|
|
return **this;
|
|
}
|
|
|
|
// Destroy any object that was built in it
|
|
~Optional()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
// Pointer-like operators
|
|
|
|
/// Dereference, with the usual bad consequences if NULL
|
|
X &operator* () const
|
|
{
|
|
return *pp;
|
|
}
|
|
|
|
X *operator-> () const
|
|
{
|
|
return pp;
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
if (pp)
|
|
pp->~X(), pp = nullptr;
|
|
}
|
|
|
|
// So you can say if(ptr)
|
|
explicit operator bool() const
|
|
{
|
|
return pp != nullptr;
|
|
}
|
|
|
|
bool has_value() const
|
|
{
|
|
return pp != nullptr;
|
|
}
|
|
|
|
private:
|
|
X* address()
|
|
{
|
|
return reinterpret_cast<X*>(&storage);
|
|
}
|
|
|
|
// Data
|
|
#if 0
|
|
typename ::std::aligned_storage<
|
|
sizeof(X)
|
|
// , alignof(X) // Not here yet in all compilers
|
|
>::type storage{};
|
|
#else
|
|
union {
|
|
double d;
|
|
char storage[sizeof(X)];
|
|
};
|
|
#endif
|
|
X* pp{ nullptr };
|
|
};
|
|
|
|
/**
|
|
A deleter for pointers obtained with malloc
|
|
*/
|
|
struct freer { void operator() (void *p) const { free(p); } };
|
|
|
|
/**
|
|
A useful alias for holding the result of malloc
|
|
*/
|
|
template< typename T >
|
|
using MallocPtr = std::unique_ptr< T, freer >;
|
|
|
|
/**
|
|
A useful alias for holding the result of strup and similar
|
|
*/
|
|
template <typename Character = char>
|
|
using MallocString = std::unique_ptr< Character[], freer >;
|
|
|
|
/**
|
|
\brief A deleter class to supply the second template parameter of unique_ptr for
|
|
classes like wxWindow that should be sent a message called Destroy rather
|
|
than be deleted directly
|
|
*/
|
|
template <typename T>
|
|
struct Destroyer {
|
|
void operator () (T *p) const { if (p) p->Destroy(); }
|
|
};
|
|
|
|
/**
|
|
\brief a convenience for using Destroyer
|
|
*/
|
|
template <typename T>
|
|
using Destroy_ptr = std::unique_ptr<T, Destroyer<T>>;
|
|
|
|
/**
|
|
\brief "finally" as in The C++ Programming Language, 4th ed., p. 358
|
|
Useful for defining ad-hoc RAII actions.
|
|
typical usage:
|
|
auto cleanup = finally([&]{ ... code; ... });
|
|
*/
|
|
|
|
// Construct this from any copyable function object, such as a lambda
|
|
template <typename F>
|
|
struct Final_action {
|
|
Final_action(F f) : clean( f ) {}
|
|
~Final_action() { clean(); }
|
|
F clean;
|
|
};
|
|
|
|
/// \brief Function template with type deduction lets you construct Final_action
|
|
/// without typing any angle brackets
|
|
template <typename F>
|
|
Final_action<F> finally (F f)
|
|
{
|
|
return Final_action<F>(f);
|
|
}
|
|
|
|
#include <algorithm>
|
|
|
|
/**
|
|
\brief Structure used by ValueRestorer
|
|
*/
|
|
template< typename T >
|
|
struct RestoreValue {
|
|
T oldValue;
|
|
void operator () ( T *p ) const { if (p) *p = oldValue; }
|
|
};
|
|
|
|
|
|
/**
|
|
\brief Set a variable temporarily in a scope
|
|
*/
|
|
template< typename T >
|
|
class ValueRestorer : public std::unique_ptr< T, RestoreValue<T> >
|
|
{
|
|
using std::unique_ptr< T, RestoreValue<T> >::reset; // make private
|
|
// But release() remains public and can be useful to commit a changed value
|
|
public:
|
|
explicit ValueRestorer( T &var )
|
|
: std::unique_ptr< T, RestoreValue<T> >( &var, { var } )
|
|
{}
|
|
explicit ValueRestorer( T &var, const T& newValue )
|
|
: std::unique_ptr< T, RestoreValue<T> >( &var, { var } )
|
|
{ var = newValue; }
|
|
ValueRestorer(ValueRestorer &&that)
|
|
: std::unique_ptr < T, RestoreValue<T> > ( std::move(that) ) {};
|
|
ValueRestorer & operator= (ValueRestorer &&that)
|
|
{
|
|
if (this != &that)
|
|
std::unique_ptr < T, RestoreValue<T> >::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
/// inline functions provide convenient parameter type deduction
|
|
template< typename T >
|
|
ValueRestorer< T > valueRestorer( T& var )
|
|
{ return ValueRestorer< T >{ var }; }
|
|
|
|
template< typename T >
|
|
ValueRestorer< T > valueRestorer( T& var, const T& newValue )
|
|
{ return ValueRestorer< T >{ var, newValue }; }
|
|
|
|
/**
|
|
\brief A convenience for defining iterators that return rvalue types, so that
|
|
they cooperate correctly with stl algorithms and std::reverse_iterator
|
|
*/
|
|
template< typename Value, typename Category = std::forward_iterator_tag >
|
|
using ValueIterator = std::iterator<
|
|
Category, const Value, ptrdiff_t,
|
|
// void pointer type so that operator -> is disabled
|
|
void,
|
|
// make "reference type" really the same as the value type
|
|
const Value
|
|
>;
|
|
|
|
/**
|
|
\brief A convenience for use with range-for
|
|
*/
|
|
template <typename Iterator>
|
|
struct IteratorRange : public std::pair<Iterator, Iterator> {
|
|
using iterator = Iterator;
|
|
using reverse_iterator = std::reverse_iterator<Iterator>;
|
|
|
|
IteratorRange (const Iterator &a, const Iterator &b)
|
|
: std::pair<Iterator, Iterator> ( a, b ) {}
|
|
|
|
IteratorRange (Iterator &&a, Iterator &&b)
|
|
: std::pair<Iterator, Iterator> ( std::move(a), std::move(b) ) {}
|
|
|
|
IteratorRange< reverse_iterator > reversal () const
|
|
{ return { this->rbegin(), this->rend() }; }
|
|
|
|
Iterator begin() const { return this->first; }
|
|
Iterator end() const { return this->second; }
|
|
|
|
reverse_iterator rbegin() const { return reverse_iterator{ this->second }; }
|
|
reverse_iterator rend() const { return reverse_iterator{ this->first }; }
|
|
|
|
bool empty() const { return this->begin() == this->end(); }
|
|
explicit operator bool () const { return !this->empty(); }
|
|
size_t size() const { return std::distance(this->begin(), this->end()); }
|
|
|
|
template <typename T> iterator find(const T &t) const
|
|
{ return std::find(this->begin(), this->end(), t); }
|
|
|
|
template <typename T> long index(const T &t) const
|
|
{
|
|
auto iter = this->find(t);
|
|
if (iter == this->end())
|
|
return -1;
|
|
return std::distance(this->begin(), iter);
|
|
}
|
|
|
|
template <typename T> bool contains(const T &t) const
|
|
{ return this->end() != this->find(t); }
|
|
|
|
template <typename F> iterator find_if(const F &f) const
|
|
{ return std::find_if(this->begin(), this->end(), f); }
|
|
|
|
template <typename F> long index_if(const F &f) const
|
|
{
|
|
auto iter = this->find_if(f);
|
|
if (iter == this->end())
|
|
return -1;
|
|
return std::distance(this->begin(), iter);
|
|
}
|
|
|
|
// to do: use std::all_of, any_of, none_of when available on all platforms
|
|
template <typename F> bool all_of(const F &f) const
|
|
{
|
|
auto notF =
|
|
[&](typename std::iterator_traits<Iterator>::reference v)
|
|
{ return !f(v); };
|
|
return !this->any_of( notF );
|
|
}
|
|
|
|
template <typename F> bool any_of(const F &f) const
|
|
{ return this->end() != this->find_if(f); }
|
|
|
|
template <typename F> bool none_of(const F &f) const
|
|
{ return !this->any_of(f); }
|
|
|
|
template<typename T> struct identity
|
|
{ const T&& operator () (T &&v) const { return std::forward(v); } };
|
|
|
|
// Like std::accumulate, but the iterators implied, and with another
|
|
// unary operation on the iterator value, pre-composed
|
|
template<
|
|
typename R,
|
|
typename Binary = std::plus< R >,
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >
|
|
>
|
|
R accumulate(
|
|
R init,
|
|
Binary binary_op = {},
|
|
Unary unary_op = {}
|
|
) const
|
|
{
|
|
R result = init;
|
|
for (auto&& v : *this)
|
|
result = binary_op(result, unary_op(v));
|
|
return result;
|
|
}
|
|
|
|
// An overload making it more convenient to use with pointers to member
|
|
// functions
|
|
template<
|
|
typename R,
|
|
typename Binary = std::plus< R >,
|
|
typename R2, typename C
|
|
>
|
|
R accumulate(
|
|
R init,
|
|
Binary binary_op,
|
|
R2 (C :: * pmf) () const
|
|
) const
|
|
{
|
|
return this->accumulate( init, binary_op, std::mem_fn( pmf ) );
|
|
}
|
|
|
|
// Some accumulations frequent enough to be worth abbreviation:
|
|
template<
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
|
|
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
|
|
>
|
|
R min( Unary unary_op = {} ) const
|
|
{
|
|
return this->accumulate(
|
|
std::numeric_limits< R >::max(),
|
|
(const R&(*)(const R&, const R&)) std::min,
|
|
unary_op
|
|
);
|
|
}
|
|
|
|
template<
|
|
typename R2, typename C,
|
|
typename R = R2
|
|
>
|
|
R min( R2 (C :: * pmf) () const ) const
|
|
{
|
|
return this->min( std::mem_fn( pmf ) );
|
|
}
|
|
|
|
template<
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
|
|
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
|
|
>
|
|
R max( Unary unary_op = {} ) const
|
|
{
|
|
return this->accumulate(
|
|
std::numeric_limits< R >::lowest(),
|
|
(const R&(*)(const R&, const R&)) std::max,
|
|
unary_op
|
|
);
|
|
}
|
|
|
|
template<
|
|
typename R2, typename C,
|
|
typename R = R2
|
|
>
|
|
R max( R2 (C :: * pmf) () const ) const
|
|
{
|
|
return this->max( std::mem_fn( pmf ) );
|
|
}
|
|
|
|
template<
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
|
|
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
|
|
>
|
|
R sum( Unary unary_op = {} ) const
|
|
{
|
|
return this->accumulate(
|
|
R{ 0 },
|
|
std::plus< R >{},
|
|
unary_op
|
|
);
|
|
}
|
|
|
|
template<
|
|
typename R2, typename C,
|
|
typename R = R2
|
|
>
|
|
R sum( R2 (C :: * pmf) () const ) const
|
|
{
|
|
return this->sum( std::mem_fn( pmf ) );
|
|
}
|
|
};
|
|
|
|
template< typename Iterator>
|
|
IteratorRange< Iterator >
|
|
make_iterator_range( const Iterator &i1, const Iterator &i2 )
|
|
{
|
|
return { i1, i2 };
|
|
}
|
|
|
|
template< typename Container >
|
|
IteratorRange< typename Container::iterator >
|
|
make_iterator_range( Container &container )
|
|
{
|
|
return { container.begin(), container.end() };
|
|
}
|
|
|
|
template< typename Container >
|
|
IteratorRange< typename Container::const_iterator >
|
|
make_iterator_range( const Container &container )
|
|
{
|
|
return { container.begin(), container.end() };
|
|
}
|
|
|
|
// A utility function building a container of results
|
|
template< typename Container, typename Iterator, typename Function >
|
|
Container transform_range( Iterator first, Iterator last, Function &&fn )
|
|
{
|
|
Container result;
|
|
std::transform( first, last, std::back_inserter( result ), fn );
|
|
return result;
|
|
}
|
|
// A utility function, often constructing a vector from another vector
|
|
template< typename OutContainer, typename InContainer, typename Function >
|
|
OutContainer transform_container( InContainer &inContainer, Function &&fn )
|
|
{
|
|
return transform_range<OutContainer>(
|
|
inContainer.begin(), inContainer.end(), fn );
|
|
}
|
|
|
|
//! Non-template helper for class template NonInterfering
|
|
/*!
|
|
If a structure contains any members with large alignment, this base class may also allow it to work in
|
|
macOS builds under current limitations of the C++17 standard implementation.
|
|
*/
|
|
struct UTILITY_API alignas(
|
|
#ifdef __WIN32__
|
|
std::hardware_destructive_interference_size
|
|
#else
|
|
// That constant isn't defined for the other builds yet
|
|
64 /* ? */
|
|
#endif
|
|
)
|
|
|
|
NonInterferingBase {
|
|
static void *operator new(std::size_t count, std::align_val_t al);
|
|
static void operator delete(void *ptr, std::align_val_t al);
|
|
|
|
#if defined (_MSC_VER) && defined(_DEBUG)
|
|
// Versions that work in the presence of the DEBUG_NEW macro.
|
|
// Ignore the arguments supplied by the macro and forward to the
|
|
// other overloads.
|
|
static void *operator new(
|
|
std::size_t count, std::align_val_t al, int, const char *, int)
|
|
{ return operator new(count, al); }
|
|
static void operator delete(
|
|
void *ptr, std::align_val_t al, int, const char *, int)
|
|
{ return operator delete(ptr, al); }
|
|
#endif
|
|
};
|
|
|
|
/*! Given a structure type T, derive a structure with sufficient padding so that there is not false sharing of
|
|
cache lines between successive elements of an array of those structures.
|
|
*/
|
|
template< typename T > struct NonInterfering
|
|
: NonInterferingBase // Inherit operators; use empty base class optimization
|
|
, T
|
|
{
|
|
using T::T;
|
|
};
|
|
|
|
// These macros are used widely, so declared here.
|
|
#define QUANTIZED_TIME(time, rate) (floor(((double)(time) * (rate)) + 0.5) / (rate))
|
|
// dB - linear amplitude conversions
|
|
#define DB_TO_LINEAR(x) (pow(10.0, (x) / 20.0))
|
|
#define LINEAR_TO_DB(x) (20.0 * log10(x))
|
|
|
|
#define MAX_AUDIO (1. - 1./(1<<15))
|
|
|
|
#endif // __AUDACITY_MEMORY_X_H__
|