1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-03 17:19:43 +02:00

403 lines
9.2 KiB
C++

/**********************************************************************
FFT3.cpp -- see notes in FFT3.h -RBD
FFT.cpp
Dominic Mazzoni
September 2000
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine when you know you don't care
about phase information.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerican Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-float conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
**********************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#ifndef __MACH__
#include <malloc.h>
#endif
#include "FFT3.h"
int **gFFTBitTable3 = NULL;
const int MaxFastBits = 16;
int IsPowerOfTwo(int x)
{
if (x < 2)
return false;
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
return false;
return true;
}
int NumberOfBitsNeeded(int PowerOfTwo)
{
int i;
if (PowerOfTwo < 2) {
fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);
exit(1);
}
for (i = 0;; i++)
if (PowerOfTwo & (1 << i))
return i;
}
int ReverseBits(int index, int NumBits)
{
int i, rev;
for (i = rev = 0; i < NumBits; i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
void InitFFT()
{
gFFTBitTable3 = (int **) malloc(sizeof(int *) * MaxFastBits);
int len = 2;
int b;
for (b = 1; b <= MaxFastBits; b++) {
gFFTBitTable3[b - 1] = (int *) malloc(len * sizeof(int));
int i;
for (i = 0; i < len; i++)
gFFTBitTable3[b - 1][i] = ReverseBits(i, b);
len <<= 1;
}
}
inline int FastReverseBits3(int i, int NumBits)
{
if (NumBits <= MaxFastBits)
return gFFTBitTable3[NumBits - 1][i];
else
return ReverseBits(i, NumBits);
}
/*
* Complex Fast Fourier Transform
*/
void FFT3(int NumSamples,
int InverseTransform,
float *RealIn, float *ImagIn, float *RealOut, float *ImagOut)
{
int NumBits; /* Number of bits needed to store indices */
int i, j, k, n;
int BlockSize, BlockEnd;
float angle_numerator = float(2.0 * M_PI);
float tr, ti; /* temp real, temp imaginary */
if (!IsPowerOfTwo(NumSamples)) {
fprintf(stderr, "%d is not a power of two\n", NumSamples);
exit(1);
}
if (!gFFTBitTable3)
InitFFT();
if (InverseTransform)
angle_numerator = -angle_numerator;
NumBits = NumberOfBitsNeeded(NumSamples);
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for (i = 0; i < NumSamples; i++) {
j = FastReverseBits3(i, NumBits);
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0F : ImagIn[i];
}
/*
** Do the FFT itself...
*/
BlockEnd = 1;
for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
float delta_angle = angle_numerator / (float) BlockSize;
float sm2 = sin(-2 * delta_angle);
float sm1 = sin(-delta_angle);
float cm2 = cos(-2 * delta_angle);
float cm1 = cos(-delta_angle);
float w = 2 * cm1;
float ar0, ar1, ar2, ai0, ai1, ai2;
for (i = 0; i < NumSamples; i += BlockSize) {
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for (j = i, n = 0; n < BlockEnd; j++, n++) {
ar0 = w * ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w * ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
k = j + BlockEnd;
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
/* if(k==NumSamples-1)
printf("j=NumSamples-1 => %g - %g=",RealOut[j],tr);
*/
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
/*
if(k==NumSamples-1)
printf("%g\n",RealOut[k]);
*/
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if (InverseTransform) {
float denom = (float) NumSamples;
for (i = 0; i < NumSamples; i++) {
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
}
/*
* Real Fast Fourier Transform
*
* This function was based on the code in Numerical Recipes in C.
* In Num. Rec., the inner loop is based on a single 1-based array
* of interleaved real and imaginary numbers. Because we have two
* separate zero-based arrays, our indices are quite different.
* Here is the correspondence between Num. Rec. indices and our indices:
*
* i1 <-> real[i]
* i2 <-> imag[i]
* i3 <-> real[n/2-i]
* i4 <-> imag[n/2-i]
*/
void RealFFT3(int NumSamples, float *RealIn, float *RealOut, float *ImagOut)
{
int Half = NumSamples / 2;
int i;
float theta = float(M_PI / Half);
float *tmpReal = (float *) alloca(sizeof(float) * Half);
float *tmpImag = (float *) alloca(sizeof(float) * Half);
for (i = 0; i < Half; i++) {
tmpReal[i] = RealIn[2 * i];
tmpImag[i] = RealIn[2 * i + 1];
}
FFT3(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
float wtemp = (float) (sin(0.5 * theta));
float wpr = -2.0F * wtemp * wtemp;
float wpi = (float) (sin(theta));
float wr = 1.0F + wpr;
float wi = wpi;
int i3;
float h1r, h1i, h2r, h2i;
for (i = 1; i < Half / 2; i++) {
i3 = Half - i;
h1r = 0.5F * (RealOut[i] + RealOut[i3]);
h1i = 0.5F * (ImagOut[i] - ImagOut[i3]);
h2r = 0.5F * (ImagOut[i] + ImagOut[i3]);
h2i = -0.5F * (RealOut[i] - RealOut[i3]);
RealOut[i] = h1r + wr * h2r - wi * h2i;
ImagOut[i] = h1i + wr * h2i + wi * h2r;
RealOut[i3] = h1r - wr * h2r + wi * h2i;
ImagOut[i3] = -h1i + wr * h2i + wi * h2r;
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
}
RealOut[0] = (h1r = RealOut[0]) + ImagOut[0];
ImagOut[0] = h1r - ImagOut[0];
//free(tmpReal);
//free(tmpImag);
}
/*
* PowerSpectrum
*
* This function computes the same as RealFFT, above, but
* adds the squares of the real and imaginary part of each
* coefficient, extracting the power and throwing away the
* phase.
*
* For speed, it does not call RealFFT, but duplicates some
* of its code.
*/
void PowerSpectrum3(int NumSamples, float *In, float *Out)
{
int Half = NumSamples / 2;
int i;
float theta = float(M_PI / Half);
float *tmpReal = (float *) alloca(sizeof(float) * Half);;
float *tmpImag = (float *) alloca(sizeof(float) * Half);
float *RealOut = (float *) alloca(sizeof(float) * Half);
float *ImagOut = (float *) alloca(sizeof(float) * Half);
for (i = 0; i < Half; i++) {
tmpReal[i] = In[2 * i];
tmpImag[i] = In[2 * i + 1];
}
FFT3(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
float wtemp = (float) (sin(0.5 * theta));
float wpr = -2.0F * wtemp * wtemp;
float wpi = (float) (sin(theta));
float wr = 1.0F + wpr;
float wi = wpi;
int i3;
float h1r, h1i, h2r, h2i, rt, it;
for (i = 1; i < Half / 2; i++) {
i3 = Half - i;
h1r = 0.5F * (RealOut[i] + RealOut[i3]);
h1i = 0.5F * (ImagOut[i] - ImagOut[i3]);
h2r = 0.5F * (ImagOut[i] + ImagOut[i3]);
h2i = -0.5F * (RealOut[i] - RealOut[i3]);
rt = h1r + wr * h2r - wi * h2i;
it = h1i + wr * h2i + wi * h2r;
Out[i] = rt * rt + it * it;
rt = h1r - wr * h2r + wi * h2i;
it = -h1i + wr * h2i + wi * h2r;
Out[i3] = rt * rt + it * it;
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
}
rt = (h1r = RealOut[0]) + ImagOut[0];
it = h1r - ImagOut[0];
Out[0] = rt * rt + it * it;
rt = RealOut[Half / 2];
it = ImagOut[Half / 2];
Out[Half / 2] = rt * rt + it * it;
//free(tmpReal);
//free(tmpImag);
//free(RealOut);
//free(ImagOut);
}
/*
* Windowing Functions
*/
int NumWindowFuncs3()
{
return 4;
}
const char *WindowFuncName3(int whichFunction)
{
switch (whichFunction) {
default:
case 0:
return "Rectangular";
case 1:
return "Bartlett";
case 2:
return "Hamming";
case 3:
return "Hanning";
}
}
void WindowFunc3(int whichFunction, int NumSamples, float *in)
{
int i;
if (whichFunction == 1) {
// Bartlett (triangular) window
for (i = 0; i < NumSamples / 2; i++) {
in[i] *= (i / (float) (NumSamples / 2));
in[i + (NumSamples / 2)] *=
(1.0F - (i / (float) (NumSamples / 2)));
}
}
if (whichFunction == 2) {
// Hamming
for (i = 0; i < NumSamples; i++)
in[i] *= 0.54F - 0.46F * (float) cos(2 * M_PI * i / (NumSamples - 1));
}
if (whichFunction == 3) {
// Hanning
for (i = 0; i < NumSamples; i++)
in[i] *= 0.50F - 0.50F * (float) cos(2 * M_PI * i / (NumSamples - 1));
}
}