1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-04-30 15:49:41 +02:00
audacity/src/NoteTrack.cpp
Paul Licameli e653b4aaf8 Eliminate Experimental.h, configure compile options instead...
... This makes it impossible to forget to include the EXPERIMENTAL definitions
(such as when cutting and pasting code) and so get unintended quiet changes of
behavior.

The EXPERIMENTAL flags are now specified instead in new file Experimental.cmake
2021-04-27 12:40:07 -04:00

1154 lines
35 KiB
C++

/**********************************************************************
Audacity: A Digital Audio Editor
NoteTrack.cpp
Dominic Mazzoni
*******************************************************************//*!
\class NoteTrack
\brief A Track that is used for Midi notes. (Somewhat old code).
*//*******************************************************************/
#include "Audacity.h" // for USE_* macros
#include "NoteTrack.h"
#include <wx/wxcrtvararg.h>
#include <wx/dc.h>
#include <wx/brush.h>
#include <wx/pen.h>
#include <wx/intl.h>
#if defined(USE_MIDI)
#include "../lib-src/header-substitutes/allegro.h"
#include <sstream>
#define ROUND(x) ((int) ((x) + 0.5))
#include "AColor.h"
#include "Prefs.h"
#include "ProjectFileIORegistry.h"
#include "prefs/ImportExportPrefs.h"
#include "InconsistencyException.h"
#include "effects/TimeWarper.h"
#include "tracks/ui/TrackView.h"
#include "tracks/ui/TrackControls.h"
#include "AllThemeResources.h"
#include "Theme.h"
#ifdef SONIFY
#include "../lib-src/portmidi/pm_common/portmidi.h"
#define SON_PROGRAM 0
#define SON_AutoSave 67
#define SON_ModifyState 60
#define SON_NoteBackground 72
#define SON_NoteForeground 74
#define SON_Measures 76 /* "bar line" */
#define SON_Serialize 77
#define SON_Unserialize 79
#define SON_VEL 100
PmStream *sonMidiStream;
bool sonificationStarted = false;
void SonifyBeginSonification()
{
PmError err = Pm_OpenOutput(&sonMidiStream, Pm_GetDefaultOutputDeviceID(),
NULL, 0, NULL, NULL, 0);
if (err) sonMidiStream = NULL;
if (sonMidiStream)
Pm_WriteShort(sonMidiStream, 0, Pm_Message(0xC0, SON_PROGRAM, 0));
sonificationStarted = true;
}
void SonifyEndSonification()
{
if (sonMidiStream) Pm_Close(sonMidiStream);
sonificationStarted = false;
}
void SonifyNoteOnOff(int p, int v)
{
if (!sonificationStarted)
SonifyBeginSonification();
if (sonMidiStream)
Pm_WriteShort(sonMidiStream, 0, Pm_Message(0x90, p, v));
}
#define SONFNS(name) \
void SonifyBegin ## name() { SonifyNoteOnOff(SON_ ## name, SON_VEL); } \
void SonifyEnd ## name() { SonifyNoteOnOff(SON_ ## name, 0); }
SONFNS(NoteBackground)
SONFNS(NoteForeground)
SONFNS(Measures)
SONFNS(Serialize)
SONFNS(Unserialize)
SONFNS(ModifyState)
SONFNS(AutoSave)
#undef SONFNS
#endif
static ProjectFileIORegistry::Entry registerFactory{
wxT( "notetrack" ),
[]( AudacityProject &project ){
auto &tracks = TrackList::Get( project );
auto result = tracks.Add( std::make_shared<NoteTrack>());
TrackView::Get( *result );
TrackControls::Get( *result );
return result;
}
};
NoteTrack::NoteTrack()
: NoteTrackBase()
{
SetDefaultName(_("Note Track"));
SetName(GetDefaultName());
mSeq = NULL;
mSerializationLength = 0;
#ifdef EXPERIMENTAL_MIDI_OUT
mVelocity = 0;
#endif
mBottomNote = MinPitch;
mTopNote = MaxPitch;
mVisibleChannels = ALL_CHANNELS;
}
NoteTrack::~NoteTrack()
{
}
Alg_seq &NoteTrack::GetSeq() const
{
if (!mSeq) {
if (!mSerializationBuffer)
mSeq = std::make_unique<Alg_seq>();
else {
std::unique_ptr<Alg_track> alg_track
{ Alg_seq::unserialize
( mSerializationBuffer.get(), mSerializationLength ) };
wxASSERT(alg_track->get_type() == 's');
mSeq.reset( static_cast<Alg_seq*>(alg_track.release()) );
// Preserve the invariant that at most one of the representations is
// valid
mSerializationBuffer.reset();
mSerializationLength = 0;
}
}
wxASSERT(mSeq);
return *mSeq;
}
Track::Holder NoteTrack::Clone() const
{
auto duplicate = std::make_shared<NoteTrack>();
duplicate->Init(*this);
// The duplicate begins life in serialized state. Often the duplicate is
// pushed on the Undo stack. Then we want to un-serialize it (or a further
// copy) only on demand after an Undo.
if (mSeq) {
SonifyBeginSerialize();
wxASSERT(!mSerializationBuffer);
// serialize from this to duplicate's mSerializationBuffer
void *buffer;
mSeq->serialize(&buffer,
&duplicate->mSerializationLength);
duplicate->mSerializationBuffer.reset( (char*)buffer );
SonifyEndSerialize();
}
else if (mSerializationBuffer) {
// Copy already serialized data.
wxASSERT(!mSeq);
duplicate->mSerializationLength = this->mSerializationLength;
duplicate->mSerializationBuffer.reset
( safenew char[ this->mSerializationLength ] );
memcpy( duplicate->mSerializationBuffer.get(),
this->mSerializationBuffer.get(), this->mSerializationLength );
}
else {
// We are duplicating a default-constructed NoteTrack, and that's okay
}
// copy some other fields here
duplicate->SetBottomNote(mBottomNote);
duplicate->SetTopNote(mTopNote);
duplicate->mVisibleChannels = mVisibleChannels;
duplicate->SetOffset(GetOffset());
#ifdef EXPERIMENTAL_MIDI_OUT
duplicate->SetVelocity(GetVelocity());
#endif
return duplicate;
}
double NoteTrack::GetOffset() const
{
return mOffset;
}
double NoteTrack::GetStartTime() const
{
return GetOffset();
}
double NoteTrack::GetEndTime() const
{
return GetStartTime() + GetSeq().get_real_dur();
}
void NoteTrack::WarpAndTransposeNotes(double t0, double t1,
const TimeWarper &warper,
double semitones)
{
double offset = this->GetOffset(); // track is shifted this amount
auto &seq = GetSeq();
seq.convert_to_seconds(); // make sure time units are right
t1 -= offset; // adjust time range to compensate for track offset
t0 -= offset;
if (t1 > seq.get_dur()) { // make sure t0, t1 are within sequence
t1 = seq.get_dur();
if (t0 >= t1) return;
}
Alg_iterator iter(mSeq.get(), false);
iter.begin();
Alg_event_ptr event;
while (0 != (event = iter.next()) && event->time < t1) {
if (event->is_note() && event->time >= t0) {
event->set_pitch(event->get_pitch() + semitones);
}
}
iter.end();
// now, use warper to warp the tempo map
seq.convert_to_beats(); // beats remain the same
Alg_time_map_ptr map = seq.get_time_map();
map->insert_beat(t0, map->time_to_beat(t0));
map->insert_beat(t1, map->time_to_beat(t1));
int i, len = map->length();
for (i = 0; i < len; i++) {
Alg_beat &beat = map->beats[i];
beat.time = warper.Warp(beat.time + offset) - offset;
}
// about to redisplay, so might as well convert back to time now
seq.convert_to_seconds();
}
// Draws the midi channel toggle buttons within the given rect.
// The rect should be evenly divisible by 4 on both axis.
void NoteTrack::DrawLabelControls
( const NoteTrack *pTrack, wxDC & dc, const wxRect &rect, int highlightedChannel )
{
dc.SetTextForeground(theTheme.Colour(clrLabelTrackText));
wxASSERT_MSG(rect.width % 4 == 0, "Midi channel control rect width must be divisible by 4");
wxASSERT_MSG(rect.height % 4 == 0, "Midi channel control rect height must be divisible by 4");
auto cellWidth = rect.width / 4;
auto cellHeight = rect.height / 4;
wxRect box;
for (int row = 0; row < 4; row++) {
for (int col = 0; col < 4; col++) {
// chanName is the "external" channel number (1-16)
// used by AColor and button labels
int chanName = row * 4 + col + 1;
box.x = rect.x + col * cellWidth;
box.y = rect.y + row * cellHeight;
box.width = cellWidth;
box.height = cellHeight;
bool visible = pTrack ? pTrack->IsVisibleChan(chanName - 1) : true;
if (visible) {
// highlightedChannel counts 0 based
if ( chanName == highlightedChannel + 1 )
AColor::LightMIDIChannel(&dc, chanName);
else
AColor::MIDIChannel(&dc, chanName);
dc.DrawRectangle(box);
// two choices: channel is enabled (to see and play) when button is in
// "up" position (original Audacity style) or in "down" position
//
#define CHANNEL_ON_IS_DOWN 1
#if CHANNEL_ON_IS_DOWN
AColor::DarkMIDIChannel(&dc, chanName);
#else
AColor::LightMIDIChannel(&dc, chanName);
#endif
AColor::Line(dc, box.x, box.y, box.x + box.width - 1, box.y);
AColor::Line(dc, box.x, box.y, box.x, box.y + box.height - 1);
#if CHANNEL_ON_IS_DOWN
AColor::LightMIDIChannel(&dc, chanName);
#else
AColor::DarkMIDIChannel(&dc, chanName);
#endif
AColor::Line(dc,
box.x + box.width - 1, box.y,
box.x + box.width - 1, box.y + box.height - 1);
AColor::Line(dc,
box.x, box.y + box.height - 1,
box.x + box.width - 1, box.y + box.height - 1);
} else {
if ( chanName == highlightedChannel + 1 )
AColor::LightMIDIChannel(&dc, chanName);
else
AColor::MIDIChannel(&dc, 0);
dc.DrawRectangle(box);
#if CHANNEL_ON_IS_DOWN
AColor::LightMIDIChannel(&dc, 0);
#else
AColor::DarkMIDIChannel(&dc, 0);
#endif
AColor::Line(dc, box.x, box.y, box.x + box.width - 1, box.y);
AColor::Line(dc, box.x, box.y, box.x, box.y + box.height - 1);
#if CHANNEL_ON_IS_DOWN
AColor::DarkMIDIChannel(&dc, 0);
#else
AColor::LightMIDIChannel(&dc, 0);
#endif
AColor::Line(dc,
box.x + box.width - 1, box.y,
box.x + box.width - 1, box.y + box.height - 1);
AColor::Line(dc,
box.x, box.y + box.height - 1,
box.x + box.width - 1, box.y + box.height - 1);
}
wxString text;
wxCoord w;
wxCoord h;
text.Printf(wxT("%d"), chanName);
dc.GetTextExtent(text, &w, &h);
dc.DrawText(text, box.x + (box.width - w) / 2, box.y + (box.height - h) / 2);
}
}
dc.SetTextForeground(theTheme.Colour(clrTrackPanelText));
AColor::MIDIChannel(&dc, 0); // always return with gray color selected
}
int NoteTrack::FindChannel(const wxRect &rect, int mx, int my)
{
wxASSERT_MSG(rect.width % 4 == 0, "Midi channel control rect width must be divisible by 4");
wxASSERT_MSG(rect.height % 4 == 0, "Midi channel control rect height must be divisible by 4");
auto cellWidth = rect.width / 4;
auto cellHeight = rect.height / 4;
int col = (mx - rect.x) / cellWidth;
int row = (my - rect.y) / cellHeight;
return row * 4 + col;
}
// Handles clicking within the midi controls rect (same as DrawLabelControls).
// This is somewhat oddly written, as these aren't real buttons - they act
// when the mouse goes down; you can't hold it pressed and move off of it.
// Left-clicking toggles a single channel; right-clicking turns off all other channels.
bool NoteTrack::LabelClick(const wxRect &rect, int mx, int my, bool right)
{
auto channel = FindChannel(rect, mx, my);
if (right)
SoloVisibleChan(channel);
else
ToggleVisibleChan(channel);
return true;
}
void NoteTrack::SetSequence(std::unique_ptr<Alg_seq> &&seq)
{
mSeq = std::move(seq);
}
void NoteTrack::PrintSequence()
{
FILE *debugOutput;
debugOutput = fopen("debugOutput.txt", "wt");
wxFprintf(debugOutput, "Importing MIDI...\n");
// This is called for debugging purposes. Do not compute mSeq on demand
// with GetSeq()
if (mSeq) {
int i = 0;
while(i < mSeq->length()) {
wxFprintf(debugOutput, "--\n");
wxFprintf(debugOutput, "type: %c\n",
((Alg_event_ptr)mSeq->track_list.tracks[i])->get_type());
wxFprintf(debugOutput, "time: %f\n",
((Alg_event_ptr)mSeq->track_list.tracks[i])->time);
wxFprintf(debugOutput, "channel: %li\n",
((Alg_event_ptr)mSeq->track_list.tracks[i])->chan);
if(((Alg_event_ptr)mSeq->track_list.tracks[i])->get_type() == wxT('n'))
{
wxFprintf(debugOutput, "pitch: %f\n",
((Alg_note_ptr)mSeq->track_list.tracks[i])->pitch);
wxFprintf(debugOutput, "duration: %f\n",
((Alg_note_ptr)mSeq->track_list.tracks[i])->dur);
wxFprintf(debugOutput, "velocity: %f\n",
((Alg_note_ptr)mSeq->track_list.tracks[i])->loud);
}
else if(((Alg_event_ptr)mSeq->track_list.tracks[i])->get_type() == wxT('n'))
{
wxFprintf(debugOutput, "key: %li\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->get_identifier());
wxFprintf(debugOutput, "attribute type: %c\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type());
wxFprintf(debugOutput, "attribute: %s\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_name());
if(((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type() == wxT('r'))
{
wxFprintf(debugOutput, "value: %f\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.r);
}
else if(((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type() == wxT('i')) {
wxFprintf(debugOutput, "value: %li\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.i);
}
else if(((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type() == wxT('s')) {
wxFprintf(debugOutput, "value: %s\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.s);
}
else {}
}
i++;
}
}
else {
wxFprintf(debugOutput, "No sequence defined!\n");
}
fclose(debugOutput);
}
Track::Holder NoteTrack::Cut(double t0, double t1)
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
double len = t1-t0;
//auto delta = -(
//( std::min( t1, GetEndTime() ) ) - ( std::max( t0, GetStartTime() ) )
//);
auto newTrack = std::make_shared<NoteTrack>();
newTrack->Init(*this);
auto &seq = GetSeq();
seq.convert_to_seconds();
newTrack->mSeq.reset(seq.cut(t0 - GetOffset(), len, false));
newTrack->SetOffset(0);
// Not needed
// Alg_seq::cut seems to handle this
//AddToDuration( delta );
// What should be done with the rest of newTrack's members?
//(mBottomNote,
// mSerializationBuffer, mSerializationLength, mVisibleChannels)
return newTrack;
}
Track::Holder NoteTrack::Copy(double t0, double t1, bool) const
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
double len = t1-t0;
auto newTrack = std::make_shared<NoteTrack>();
newTrack->Init(*this);
auto &seq = GetSeq();
seq.convert_to_seconds();
newTrack->mSeq.reset(seq.copy(t0 - GetOffset(), len, false));
newTrack->SetOffset(0);
// What should be done with the rest of newTrack's members?
// (mBottomNote, mSerializationBuffer,
// mSerializationLength, mVisibleChannels)
return newTrack;
}
bool NoteTrack::Trim(double t0, double t1)
{
if (t1 < t0)
return false;
auto &seq = GetSeq();
//auto delta = -(
//( GetEndTime() - std::min( GetEndTime(), t1 ) ) +
//( std::max(t0, GetStartTime()) - GetStartTime() )
//);
seq.convert_to_seconds();
// DELETE way beyond duration just in case something is out there:
seq.clear(t1 - GetOffset(), seq.get_dur() + 10000.0, false);
// Now that stuff beyond selection is cleared, clear before selection:
seq.clear(0.0, t0 - GetOffset(), false);
// want starting time to be t0
SetOffset(t0);
// Not needed
// Alg_seq::clear seems to handle this
//AddToDuration( delta );
return true;
}
void NoteTrack::Clear(double t0, double t1)
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
double len = t1-t0;
auto &seq = GetSeq();
auto offset = GetOffset();
auto start = t0 - offset;
if (start < 0.0) {
// AlgSeq::clear will shift the cleared interval, not changing len, if
// start is negative. That's not what we want to happen.
if (len > -start) {
seq.clear(0, len + start, false);
SetOffset(t0);
}
else
SetOffset(offset - len);
}
else {
//auto delta = -(
//( std::min( t1, GetEndTime() ) ) - ( std::max( t0, GetStartTime() ) )
//);
seq.clear(start, len, false);
// Not needed
// Alg_seq::clear seems to handle this
// AddToDuration( delta );
}
}
void NoteTrack::Paste(double t, const Track *src)
{
// Paste inserts src at time t. If src has a positive offset,
// the offset is treated as silence which is also inserted. If
// the offset is negative, the offset is ignored and the ENTIRE
// src is inserted (otherwise, we would either lose data from
// src by not inserting things at negative times, or inserting
// things at negative times could overlap things already in
// the destination track).
//Check that src is a non-NULL NoteTrack
bool bOk = src && src->TypeSwitch< bool >( [&](const NoteTrack *other) {
auto myOffset = this->GetOffset();
if (t < myOffset) {
// workaround strange behavior described at
// http://bugzilla.audacityteam.org/show_bug.cgi?id=1735#c3
SetOffset(t);
InsertSilence(t, myOffset - t);
}
double delta = 0.0;
auto &seq = GetSeq();
auto offset = other->GetOffset();
if ( offset > 0 ) {
seq.convert_to_seconds();
seq.insert_silence( t - GetOffset(), offset );
t += offset;
// Is this needed or does Alg_seq::insert_silence take care of it?
//delta += offset;
}
// This seems to be needed:
delta += std::max( 0.0, t - GetEndTime() );
// This, not:
//delta += other->GetSeq().get_real_dur();
seq.paste(t - GetOffset(), &other->GetSeq());
AddToDuration( delta );
return true;
});
if ( !bOk )
// THROW_INCONSISTENCY_EXCEPTION; // ?
(void)0;// intentionally do nothing
}
void NoteTrack::Silence(double t0, double t1)
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
auto len = t1 - t0;
auto &seq = GetSeq();
seq.convert_to_seconds();
// XXX: do we want to set the all param?
// If it's set, then it seems like notes are silenced if they start or end in the range,
// otherwise only if they start in the range. --Poke
seq.silence(t0 - GetOffset(), len, false);
}
void NoteTrack::InsertSilence(double t, double len)
{
if (len < 0)
THROW_INCONSISTENCY_EXCEPTION;
auto &seq = GetSeq();
seq.convert_to_seconds();
seq.insert_silence(t - GetOffset(), len);
// is this needed?
// AddToDuration( len );
}
void NoteTrack::SetVelocity(float velocity)
{
if (mVelocity != velocity) {
mVelocity = velocity;
Notify();
}
}
// Call this function to manipulate the underlying sequence data. This is
// NOT the function that handles horizontal dragging.
bool NoteTrack::Shift(double t) // t is always seconds
{
if (t > 0) {
auto &seq = GetSeq();
// insert an even number of measures
seq.convert_to_beats();
// get initial tempo
double tempo = seq.get_tempo(0.0);
double beats_per_measure = seq.get_bar_len(0.0);
int m = ROUND(t * tempo / beats_per_measure);
// need at least 1 measure, so if we rounded down to zero, fix it
if (m == 0) m = 1;
// compute NEW tempo so that m measures at NEW tempo take t seconds
tempo = beats_per_measure * m / t; // in beats per second
seq.insert_silence(0.0, beats_per_measure * m);
seq.set_tempo(tempo * 60.0 /* bpm */, 0.0, beats_per_measure * m);
seq.write("afterShift.gro");
} else if (t < 0) {
auto &seq = GetSeq();
seq.convert_to_seconds();
seq.clear(0, t, true);
} else { // offset is zero, no modifications
return false;
}
return true;
}
QuantizedTimeAndBeat NoteTrack::NearestBeatTime( double time ) const
{
// Alg_seq knows nothing about offset, so remove offset time
double seq_time = time - GetOffset();
double beat;
auto &seq = GetSeq();
seq_time = seq.nearest_beat_time(seq_time, &beat);
// add the offset back in to get "actual" audacity track time
return { seq_time + GetOffset(), beat };
}
Track::Holder NoteTrack::PasteInto( AudacityProject & ) const
{
auto pNewTrack = std::make_shared<NoteTrack>();
pNewTrack->Paste(0.0, this);
return pNewTrack;
}
auto NoteTrack::GetIntervals() const -> ConstIntervals
{
ConstIntervals results;
results.emplace_back( GetStartTime(), GetEndTime() );
return results;
}
auto NoteTrack::GetIntervals() -> Intervals
{
Intervals results;
results.emplace_back( GetStartTime(), GetEndTime() );
return results;
}
void NoteTrack::AddToDuration( double delta )
{
auto &seq = GetSeq();
#if 0
// PRL: Would this be better ?
seq.set_real_dur( seq.get_real_dur() + delta );
#else
seq.convert_to_seconds();
seq.set_dur( seq.get_dur() + delta );
#endif
}
bool NoteTrack::StretchRegion
( QuantizedTimeAndBeat t0, QuantizedTimeAndBeat t1, double newDur )
{
auto &seq = GetSeq();
bool result = seq.stretch_region( t0.second, t1.second, newDur );
if (result) {
const auto oldDur = t1.first - t0.first;
AddToDuration( newDur - oldDur );
}
return result;
}
namespace
{
void swap(std::unique_ptr<Alg_seq> &a, std::unique_ptr<Alg_seq> &b)
{
std::unique_ptr<Alg_seq> tmp = std::move(a);
a = std::move(b);
b = std::move(tmp);
}
}
Alg_seq *NoteTrack::MakeExportableSeq(std::unique_ptr<Alg_seq> &cleanup) const
{
cleanup.reset();
double offset = GetOffset();
if (offset == 0)
return &GetSeq();
// make a copy, deleting events that are shifted before time 0
double start = -offset;
if (start < 0) start = 0;
// notes that begin before "start" are not included even if they
// extend past "start" (because "all" parameter is set to false)
cleanup.reset( GetSeq().copy(start, GetSeq().get_dur() - start, false) );
auto seq = cleanup.get();
if (offset > 0) {
{
// swap cleanup and mSeq so that Shift operates on the NEW copy
swap( this->mSeq, cleanup );
auto cleanup2 = finally( [&] { swap( this->mSeq, cleanup ); } );
const_cast< NoteTrack *>( this )->Shift(offset);
}
#ifdef OLD_CODE
// now shift events by offset. This must be done with an integer
// number of measures, so first, find the beats-per-measure
double beats_per_measure = 4.0;
Alg_time_sig_ptr tsp = NULL;
if (seq->time_sig.length() > 0 && seq->time_sig[0].beat < ALG_EPS) {
// there is an initial time signature
tsp = &(seq->time_sig[0]);
beats_per_measure = (tsp->num * 4) / tsp->den;
}
// also need the initial tempo
double bps = ALG_DEFAULT_BPM / 60;
Alg_time_map_ptr map = seq->get_time_map();
Alg_beat_ptr bp = &(map->beats[0]);
if (bp->time < ALG_EPS) { // tempo change at time 0
if (map->beats.len > 1) { // compute slope to get tempo
bps = (map->beats[1].beat - map->beats[0].beat) /
(map->beats[1].time - map->beats[0].time);
} else if (seq->get_time_map()->last_tempo_flag) {
bps = seq->get_time_map()->last_tempo;
}
}
// find closest number of measures to fit in the gap
// number of measures is offset / measure_time
double measure_time = beats_per_measure / bps; // seconds per measure
int n = ROUND(offset / measure_time);
if (n == 0) n = 1;
// we will insert n measures. Compute the desired duration of each.
measure_time = offset / n;
bps = beats_per_measure / measure_time;
// insert integer multiple of measures at beginning
seq->convert_to_beats();
seq->insert_silence(0, beats_per_measure * n);
// make sure time signature at 0 is correct
if (tsp) {
seq->set_time_sig(0, tsp->num, tsp->den);
}
// adjust tempo to match offset
seq->set_tempo(bps * 60.0, 0, beats_per_measure * n);
#endif
} else {
auto &mySeq = GetSeq();
// if offset is negative, it might not be a multiple of beats, but
// we want to preserve the relative positions of measures. I.e. we
// should shift barlines and time signatures as well as notes.
// Insert a time signature at the first bar-line if necessary.
// Translate start from seconds to beats and call it beat:
double beat = mySeq.get_time_map()->time_to_beat(start);
// Find the time signature in mySeq in effect at start (beat):
int i = mySeq.time_sig.find_beat(beat);
// i is where you would insert a NEW time sig at beat,
// Case 1: beat coincides with a time sig at i. Time signature
// at beat means that there is a barline at beat, so when beat
// is shifted to 0, the relative barline positions are preserved
if (mySeq.time_sig.length() > 0 &&
within(beat, mySeq.time_sig[i].beat, ALG_EPS)) {
// beat coincides with time signature change, so offset must
// be a multiple of beats
/* do nothing */ ;
// Case 2: there is no time signature before beat.
} else if (i == 0 && (mySeq.time_sig.length() == 0 ||
mySeq.time_sig[i].beat > beat)) {
// If beat does not fall on an implied barline, we need to
// insert a time signature.
double measures = beat / 4.0;
double imeasures = ROUND(measures);
if (!within(measures, imeasures, ALG_EPS)) {
double bar_offset = ((int)(measures) + 1) * 4.0 - beat;
seq->set_time_sig(bar_offset, 4, 4);
}
// This case should never be true because if i == 0, either there
// are no time signatures before beat (Case 2),
// or there is one time signature at beat (Case 1)
} else if (i == 0) {
/* do nothing (might be good to assert(false)) */ ;
// Case 3: i-1 must be the effective time sig position
} else {
i -= 1; // index the time signature in effect at beat
Alg_time_sig_ptr tsp = &(mySeq.time_sig[i]);
double beats_per_measure = (tsp->num * 4) / tsp->den;
double measures = (beat - tsp->beat) / beats_per_measure;
int imeasures = ROUND(measures);
if (!within(measures, imeasures, ALG_EPS)) {
// beat is not on a measure, so we need to insert a time sig
// to force a bar line at the first measure location after
// beat
double bar = tsp->beat + beats_per_measure * ((int)(measures) + 1);
double bar_offset = bar - beat;
// insert NEW time signature at bar_offset in NEW sequence
// It will have the same time signature, but the position will
// force a barline to match the barlines in mSeq
seq->set_time_sig(bar_offset, tsp->num, tsp->den);
}
// else beat coincides with a barline, so no need for an extra
// time signature to force barline alignment
}
}
return seq;
}
bool NoteTrack::ExportMIDI(const wxString &f) const
{
std::unique_ptr<Alg_seq> cleanup;
auto seq = MakeExportableSeq(cleanup);
bool rslt = seq->smf_write(f.mb_str());
return rslt;
}
bool NoteTrack::ExportAllegro(const wxString &f) const
{
double offset = GetOffset();
auto in_seconds = ImportExportPrefs::AllegroStyleSetting.ReadEnum();
auto &seq = GetSeq();
if (in_seconds) {
seq.convert_to_seconds();
} else {
seq.convert_to_beats();
}
return seq.write(f.mb_str(), offset);
}
bool NoteTrack::HandleXMLTag(const wxChar *tag, const wxChar **attrs)
{
if (!wxStrcmp(tag, wxT("notetrack"))) {
while (*attrs) {
const wxChar *attr = *attrs++;
const wxChar *value = *attrs++;
if (!value)
break;
const wxString strValue = value;
long nValue;
double dblValue;
if (this->Track::HandleCommonXMLAttribute(attr, strValue))
;
else if (this->NoteTrackBase::HandleXMLAttribute(attr, value))
{}
else if (!wxStrcmp(attr, wxT("offset")) &&
XMLValueChecker::IsGoodString(strValue) &&
Internat::CompatibleToDouble(strValue, &dblValue))
SetOffset(dblValue);
else if (!wxStrcmp(attr, wxT("visiblechannels"))) {
if (!XMLValueChecker::IsGoodInt(strValue) ||
!strValue.ToLong(&nValue) ||
!XMLValueChecker::IsValidVisibleChannels(nValue))
return false;
mVisibleChannels = nValue;
}
#ifdef EXPERIMENTAL_MIDI_OUT
else if (!wxStrcmp(attr, wxT("velocity")) &&
XMLValueChecker::IsGoodString(strValue) &&
Internat::CompatibleToDouble(strValue, &dblValue))
mVelocity = (float) dblValue;
#endif
else if (!wxStrcmp(attr, wxT("bottomnote")) &&
XMLValueChecker::IsGoodInt(strValue) && strValue.ToLong(&nValue))
SetBottomNote(nValue);
else if (!wxStrcmp(attr, wxT("topnote")) &&
XMLValueChecker::IsGoodInt(strValue) && strValue.ToLong(&nValue))
SetTopNote(nValue);
else if (!wxStrcmp(attr, wxT("data"))) {
std::string s(strValue.mb_str(wxConvUTF8));
std::istringstream data(s);
mSeq = std::make_unique<Alg_seq>(data, false);
}
} // while
return true;
}
return false;
}
XMLTagHandler *NoteTrack::HandleXMLChild(const wxChar * WXUNUSED(tag))
{
return NULL;
}
void NoteTrack::WriteXML(XMLWriter &xmlFile) const
// may throw
{
std::ostringstream data;
Track::Holder holder;
const NoteTrack *saveme = this;
if (!mSeq) {
// replace saveme with an (unserialized) duplicate, which is
// destroyed at end of function.
holder = Clone();
saveme = static_cast<NoteTrack*>(holder.get());
}
saveme->GetSeq().write(data, true);
xmlFile.StartTag(wxT("notetrack"));
saveme->Track::WriteCommonXMLAttributes( xmlFile );
this->NoteTrackBase::WriteXMLAttributes(xmlFile);
xmlFile.WriteAttr(wxT("offset"), saveme->GetOffset());
xmlFile.WriteAttr(wxT("visiblechannels"), saveme->mVisibleChannels);
#ifdef EXPERIMENTAL_MIDI_OUT
xmlFile.WriteAttr(wxT("velocity"), (double) saveme->mVelocity);
#endif
xmlFile.WriteAttr(wxT("bottomnote"), saveme->mBottomNote);
xmlFile.WriteAttr(wxT("topnote"), saveme->mTopNote);
xmlFile.WriteAttr(wxT("data"), wxString(data.str().c_str(), wxConvUTF8));
xmlFile.EndTag(wxT("notetrack"));
}
void NoteTrack::SetBottomNote(int note)
{
if (note < MinPitch)
note = MinPitch;
else if (note > 96)
note = 96;
wxCHECK(note <= mTopNote, );
mBottomNote = note;
}
void NoteTrack::SetTopNote(int note)
{
if (note > MaxPitch)
note = MaxPitch;
wxCHECK(note >= mBottomNote, );
mTopNote = note;
}
void NoteTrack::SetNoteRange(int note1, int note2)
{
// Bounds check
if (note1 > MaxPitch)
note1 = MaxPitch;
else if (note1 < MinPitch)
note1 = MinPitch;
if (note2 > MaxPitch)
note2 = MaxPitch;
else if (note2 < MinPitch)
note2 = MinPitch;
// Swap to ensure ordering
if (note2 < note1) { auto tmp = note1; note1 = note2; note2 = tmp; }
mBottomNote = note1;
mTopNote = note2;
}
void NoteTrack::ShiftNoteRange(int offset)
{
// Ensure everything stays in bounds
if (mBottomNote + offset < MinPitch || mTopNote + offset > MaxPitch)
return;
mBottomNote += offset;
mTopNote += offset;
}
#if 0
void NoteTrack::StartVScroll()
{
mStartBottomNote = mBottomNote;
}
void NoteTrack::VScroll(int start, int end)
{
int ph = GetPitchHeight();
int delta = ((end - start) + ph / 2) / ph;
ShiftNoteRange(delta);
}
#endif
void NoteTrack::Zoom(const wxRect &rect, int y, float multiplier, bool center)
{
NoteTrackDisplayData data = NoteTrackDisplayData(this, rect);
int clickedPitch = data.YToIPitch(y);
int extent = mTopNote - mBottomNote + 1;
int newExtent = (int) (extent / multiplier);
float position;
if (center) {
// center the pitch that the user clicked on
position = .5;
} else {
// align to keep the pitch that the user clicked on in the same place
position = extent / (clickedPitch - mBottomNote);
}
int newBottomNote = clickedPitch - (newExtent * position);
int newTopNote = clickedPitch + (newExtent * (1 - position));
SetNoteRange(newBottomNote, newTopNote);
}
void NoteTrack::ZoomTo(const wxRect &rect, int start, int end)
{
wxRect trackRect(0, rect.GetY(), 1, rect.GetHeight());
NoteTrackDisplayData data = NoteTrackDisplayData(this, trackRect);
int pitch1 = data.YToIPitch(start);
int pitch2 = data.YToIPitch(end);
if (pitch1 == pitch2) {
// Just zoom in instead of zooming to show only one note
Zoom(rect, start, 1, true);
return;
}
// It's fine for this to be in either order
SetNoteRange(pitch1, pitch2);
}
void NoteTrack::ZoomAllNotes()
{
Alg_iterator iterator( &GetSeq(), false );
iterator.begin();
Alg_event_ptr evt;
// Go through all of the notes, finding the minimum and maximum value pitches.
bool hasNotes = false;
int minPitch = MaxPitch;
int maxPitch = MinPitch;
while (NULL != (evt = iterator.next())) {
if (evt->is_note()) {
int pitch = (int) evt->get_pitch();
hasNotes = true;
if (pitch < minPitch)
minPitch = pitch;
if (pitch > maxPitch)
maxPitch = pitch;
}
}
if (!hasNotes) {
// Semi-arbitrary default values:
minPitch = 48;
maxPitch = 72;
}
SetNoteRange(minPitch, maxPitch);
}
NoteTrackDisplayData::NoteTrackDisplayData(const NoteTrack* track, const wxRect &r)
{
auto span = track->GetTopNote() - track->GetBottomNote() + 1; // + 1 to make sure it includes both
mMargin = std::min((int) (r.height / (float)(span)) / 2, r.height / 4);
// Count the number of dividers between B/C and E/F
int numC = 0, numF = 0;
auto botOctave = track->GetBottomNote() / 12, botNote = track->GetBottomNote() % 12;
auto topOctave = track->GetTopNote() / 12, topNote = track->GetTopNote() % 12;
if (topOctave == botOctave)
{
if (botNote == 0) numC = 1;
if (topNote <= 5) numF = 1;
}
else
{
numC = topOctave - botOctave;
numF = topOctave - botOctave - 1;
if (botNote == 0) numC++;
if (botNote <= 5) numF++;
if (topOctave <= 5) numF++;
}
// Effective space, excluding the margins and the lines between some notes
auto effectiveHeight = r.height - (2 * (mMargin + 1)) - numC - numF;
// Guaranteed that both the bottom and top notes will be visible
// (assuming that the clamping below does not happen)
mPitchHeight = effectiveHeight / ((float) span);
if (mPitchHeight < MinPitchHeight)
mPitchHeight = MinPitchHeight;
if (mPitchHeight > MaxPitchHeight)
mPitchHeight = MaxPitchHeight;
mBottom = r.y + r.height - GetNoteMargin() - 1 - GetPitchHeight(1) +
botOctave * GetOctaveHeight() + GetNotePos(botNote);
}
int NoteTrackDisplayData::IPitchToY(int p) const
{ return mBottom - (p / 12) * GetOctaveHeight() - GetNotePos(p % 12); }
int NoteTrackDisplayData::YToIPitch(int y) const
{
y = mBottom - y; // pixels above pitch 0
int octave = (y / GetOctaveHeight());
y -= octave * GetOctaveHeight();
// result is approximate because C and G are one pixel taller than
// mPitchHeight.
// Poke 1-13-18: However in practice this seems not to be an issue,
// as long as we use mPitchHeight and not the rounded version
return (y / mPitchHeight) + octave * 12;
}
const float NoteTrack::ZoomStep = powf( 2.0f, 0.25f );
#endif // USE_MIDI