mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-04 17:49:45 +02:00
716 lines
19 KiB
C++
716 lines
19 KiB
C++
#ifndef __AUDACITY_MEMORY_X_H__
|
|
#define __AUDACITY_MEMORY_X_H__
|
|
|
|
// C++ standard header <memory> with a few extensions
|
|
#include <memory>
|
|
#include <cstdlib> // Needed for free.
|
|
#ifndef safenew
|
|
#define safenew new
|
|
#endif
|
|
|
|
|
|
#include <functional>
|
|
|
|
#if !(_MSC_VER >= 1800 || __cplusplus >= 201402L)
|
|
/* replicate the very useful C++14 make_unique for those build environments
|
|
that don't implement it yet.
|
|
typical useage:
|
|
auto p = std::make_unique<Myclass>(ctorArg1, ctorArg2, ... ctorArgN);
|
|
p->DoSomething();
|
|
auto q = std::make_unique<Myclass[]>(count);
|
|
q[0].DoSomethingElse();
|
|
|
|
The first hides naked NEW and DELETE from the source code.
|
|
The second hides NEW[] and DELETE[]. Both of course ensure destruction if
|
|
you don't use something like std::move(p) or q.release(). Both expressions require
|
|
that you identify the type only once, which is brief and less error prone.
|
|
|
|
(Whereas this omission of [] might invite a runtime error:
|
|
std::unique_ptr<Myclass> q { safenew Myclass[count] }; )
|
|
|
|
Some C++11 tricks needed here are (1) variadic argument lists and
|
|
(2) making the compile-time dispatch work correctly. You can't have
|
|
a partially specialized template function, but you get the effect of that
|
|
by other metaprogramming means.
|
|
*/
|
|
|
|
namespace std {
|
|
// For overloading resolution
|
|
template <typename X> struct __make_unique_result {
|
|
using scalar_case = unique_ptr<X>;
|
|
};
|
|
|
|
// Partial specialization of the struct for array case
|
|
template <typename X> struct __make_unique_result<X[]> {
|
|
using array_case = unique_ptr<X[]>;
|
|
using element = X;
|
|
};
|
|
|
|
// Now the scalar version of unique_ptr
|
|
template<typename X, typename... Args> inline
|
|
typename __make_unique_result<X>::scalar_case
|
|
make_unique(Args&&... args)
|
|
{
|
|
return typename __make_unique_result<X>::scalar_case
|
|
{ safenew X(forward<Args>(args)...) };
|
|
}
|
|
|
|
// Now the array version of unique_ptr
|
|
// The compile-time dispatch trick is that the non-existence
|
|
// of the scalar_case type makes the above overload
|
|
// unavailable when the template parameter is explicit
|
|
template<typename X> inline
|
|
typename __make_unique_result<X>::array_case
|
|
make_unique(size_t count)
|
|
{
|
|
return typename __make_unique_result<X>::array_case
|
|
{ safenew typename __make_unique_result<X>::element[count] };
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* ArrayOf<X>
|
|
* Not to be confused with std::array (which takes a fixed size) or std::vector
|
|
* This maintains a pointer allocated by NEW X[]. It's cheap: only one pointer,
|
|
* with no size and capacity information for resizing as for vector, and if X is
|
|
* a built-in numeric or pointer type, by default there is no zero filling at
|
|
* allocation time.
|
|
*/
|
|
|
|
template<typename X>
|
|
class ArrayOf : public std::unique_ptr<X[]>
|
|
{
|
|
public:
|
|
ArrayOf() {}
|
|
|
|
template<typename Integral>
|
|
explicit ArrayOf(Integral count, bool initialize = false)
|
|
{
|
|
static_assert(std::is_unsigned<Integral>::value, "Unsigned arguments only");
|
|
reinit(count, initialize);
|
|
}
|
|
|
|
//ArrayOf(const ArrayOf&) PROHIBITED;
|
|
ArrayOf(const ArrayOf&) = delete;
|
|
ArrayOf(ArrayOf&& that)
|
|
: std::unique_ptr < X[] >
|
|
(std::move((std::unique_ptr < X[] >&)(that)))
|
|
{
|
|
}
|
|
ArrayOf& operator= (ArrayOf &&that)
|
|
{
|
|
std::unique_ptr<X[]>::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
ArrayOf& operator= (std::unique_ptr<X[]> &&that)
|
|
{
|
|
std::unique_ptr<X[]>::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
|
|
template< typename Integral >
|
|
void reinit(Integral count,
|
|
bool initialize = false)
|
|
{
|
|
static_assert(std::is_unsigned<Integral>::value, "Unsigned arguments only");
|
|
if (initialize)
|
|
// Initialize elements (usually, to zero for a numerical type)
|
|
std::unique_ptr<X[]>::reset(safenew X[count]{});
|
|
else
|
|
// Avoid the slight initialization overhead
|
|
std::unique_ptr<X[]>::reset(safenew X[count]);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\class ArrayOf
|
|
|
|
ArraysOf<X>
|
|
|
|
\brief This simplifies arrays of arrays, each array separately allocated with NEW[]
|
|
But it might be better to use std::Array<ArrayOf<X>, N> for some small constant N
|
|
Or use just one array when sub-arrays have a common size and are not large.
|
|
*/
|
|
template<typename X>
|
|
class ArraysOf : public ArrayOf<ArrayOf<X>>
|
|
{
|
|
public:
|
|
ArraysOf() {}
|
|
|
|
template<typename Integral>
|
|
explicit ArraysOf(Integral N)
|
|
: ArrayOf<ArrayOf<X>>( N )
|
|
{}
|
|
|
|
template<typename Integral1, typename Integral2 >
|
|
ArraysOf(Integral1 N, Integral2 M, bool initialize = false)
|
|
: ArrayOf<ArrayOf<X>>( N )
|
|
{
|
|
static_assert(std::is_unsigned<Integral1>::value, "Unsigned arguments only");
|
|
static_assert(std::is_unsigned<Integral2>::value, "Unsigned arguments only");
|
|
for (size_t ii = 0; ii < N; ++ii)
|
|
(*this)[ii] = ArrayOf<X>{ M, initialize };
|
|
}
|
|
|
|
//ArraysOf(const ArraysOf&) PROHIBITED;
|
|
ArraysOf(const ArraysOf&) =delete;
|
|
ArraysOf& operator= (ArraysOf&& that)
|
|
{
|
|
ArrayOf<ArrayOf<X>>::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
|
|
template< typename Integral >
|
|
void reinit(Integral count)
|
|
{
|
|
ArrayOf<ArrayOf<X>>::reinit( count );
|
|
}
|
|
|
|
template< typename Integral >
|
|
void reinit(Integral count, bool initialize)
|
|
{
|
|
ArrayOf<ArrayOf<X>>::reinit( count, initialize );
|
|
}
|
|
|
|
template<typename Integral1, typename Integral2 >
|
|
void reinit(Integral1 countN, Integral2 countM, bool initialize = false)
|
|
{
|
|
static_assert(std::is_unsigned<Integral1>::value, "Unsigned arguments only");
|
|
static_assert(std::is_unsigned<Integral2>::value, "Unsigned arguments only");
|
|
reinit(countN, false);
|
|
for (size_t ii = 0; ii < countN; ++ii)
|
|
(*this)[ii].reinit(countM, initialize);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\class Optional
|
|
\brief Like a smart pointer, allows for object to not exist (nullptr)
|
|
\brief emulating some of std::optional of C++17
|
|
|
|
template class Optional<X>
|
|
Can be used for monomorphic objects that are stack-allocable, but only conditionally constructed.
|
|
You might also use it as a member.
|
|
Initialize with emplace(), then use like a smart pointer,
|
|
with *, ->, reset(), or in if()
|
|
*/
|
|
|
|
// Placement-NEW is used below, and that does not cooperate with the DEBUG_NEW for Visual Studio
|
|
#ifdef _DEBUG
|
|
#ifdef _MSC_VER
|
|
#undef new
|
|
#endif
|
|
#endif
|
|
|
|
|
|
template<typename X>
|
|
class Optional {
|
|
public:
|
|
|
|
using value_type = X;
|
|
|
|
// Construct as NULL
|
|
Optional() {}
|
|
|
|
// Supply the copy and move, so you might use this as a class member too
|
|
Optional(const Optional &that)
|
|
{
|
|
if (that)
|
|
emplace(*that);
|
|
}
|
|
|
|
Optional& operator= (const Optional &that)
|
|
{
|
|
if (this != &that) {
|
|
if (that)
|
|
emplace(*that);
|
|
else
|
|
reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Optional(Optional &&that)
|
|
{
|
|
if (that)
|
|
emplace(::std::move(*that));
|
|
}
|
|
|
|
Optional& operator= (Optional &&that)
|
|
{
|
|
if (this != &that) {
|
|
if (that)
|
|
emplace(::std::move(*that));
|
|
else
|
|
reset();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Make an object in the buffer, passing constructor arguments,
|
|
/// but destroying any previous object first
|
|
/// Note that if constructor throws, we remain in a consistent
|
|
/// NULL state -- giving exception safety but only weakly
|
|
/// (previous value was lost if present)
|
|
template<typename... Args>
|
|
X& emplace(Args&&... args)
|
|
{
|
|
// Lose any old value
|
|
reset();
|
|
// emplace NEW value
|
|
pp = safenew(address()) X(std::forward<Args>(args)...);
|
|
return **this;
|
|
}
|
|
|
|
// Destroy any object that was built in it
|
|
~Optional()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
// Pointer-like operators
|
|
|
|
/// Dereference, with the usual bad consequences if NULL
|
|
X &operator* () const
|
|
{
|
|
return *pp;
|
|
}
|
|
|
|
X *operator-> () const
|
|
{
|
|
return pp;
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
if (pp)
|
|
pp->~X(), pp = nullptr;
|
|
}
|
|
|
|
// So you can say if(ptr)
|
|
explicit operator bool() const
|
|
{
|
|
return pp != nullptr;
|
|
}
|
|
|
|
bool has_value() const
|
|
{
|
|
return pp != nullptr;
|
|
}
|
|
|
|
private:
|
|
X* address()
|
|
{
|
|
return reinterpret_cast<X*>(&storage);
|
|
}
|
|
|
|
// Data
|
|
#if 0
|
|
typename ::std::aligned_storage<
|
|
sizeof(X)
|
|
// , alignof(X) // Not here yet in all compilers
|
|
>::type storage{};
|
|
#else
|
|
union {
|
|
double d;
|
|
char storage[sizeof(X)];
|
|
};
|
|
#endif
|
|
X* pp{ nullptr };
|
|
};
|
|
|
|
// Restore definition of debug new
|
|
#ifdef _DEBUG
|
|
#ifdef _MSC_VER
|
|
#undef THIS_FILE
|
|
static const char THIS_FILE[] = __FILE__;
|
|
#define new new(_NORMAL_BLOCK, THIS_FILE, __LINE__)
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
A deleter for pointers obtained with malloc
|
|
*/
|
|
struct freer { void operator() (void *p) const { free(p); } };
|
|
|
|
/**
|
|
A useful alias for holding the result of malloc
|
|
*/
|
|
template< typename T >
|
|
using MallocPtr = std::unique_ptr< T, freer >;
|
|
|
|
/**
|
|
A useful alias for holding the result of strup and similar
|
|
*/
|
|
template <typename Character = char>
|
|
using MallocString = std::unique_ptr< Character[], freer >;
|
|
|
|
/**
|
|
\brief A deleter class to supply the second template parameter of unique_ptr for
|
|
classes like wxWindow that should be sent a message called Destroy rather
|
|
than be deleted directly
|
|
*/
|
|
template <typename T>
|
|
struct Destroyer {
|
|
void operator () (T *p) const { if (p) p->Destroy(); }
|
|
};
|
|
|
|
/**
|
|
\brief a convenience for using Destroyer
|
|
*/
|
|
template <typename T>
|
|
using Destroy_ptr = std::unique_ptr<T, Destroyer<T>>;
|
|
|
|
/**
|
|
\brief "finally" as in The C++ Programming Language, 4th ed., p. 358
|
|
Useful for defining ad-hoc RAII actions.
|
|
typical usage:
|
|
auto cleanup = finally([&]{ ... code; ... });
|
|
*/
|
|
|
|
// Construct this from any copyable function object, such as a lambda
|
|
template <typename F>
|
|
struct Final_action {
|
|
Final_action(F f) : clean( f ) {}
|
|
~Final_action() { clean(); }
|
|
F clean;
|
|
};
|
|
|
|
/// \brief Function template with type deduction lets you construct Final_action
|
|
/// without typing any angle brackets
|
|
template <typename F>
|
|
Final_action<F> finally (F f)
|
|
{
|
|
return Final_action<F>(f);
|
|
}
|
|
|
|
#include <wx/utils.h> // for wxMin, wxMax
|
|
#include <algorithm>
|
|
|
|
/**
|
|
\brief Structure used by ValueRestorer
|
|
*/
|
|
template< typename T >
|
|
struct RestoreValue {
|
|
T oldValue;
|
|
void operator () ( T *p ) const { if (p) *p = oldValue; }
|
|
};
|
|
|
|
|
|
/**
|
|
\brief Set a variable temporarily in a scope
|
|
*/
|
|
template< typename T >
|
|
class ValueRestorer : public std::unique_ptr< T, RestoreValue<T> >
|
|
{
|
|
using std::unique_ptr< T, RestoreValue<T> >::reset; // make private
|
|
// But release() remains public and can be useful to commit a changed value
|
|
public:
|
|
explicit ValueRestorer( T &var )
|
|
: std::unique_ptr< T, RestoreValue<T> >( &var, { var } )
|
|
{}
|
|
explicit ValueRestorer( T &var, const T& newValue )
|
|
: std::unique_ptr< T, RestoreValue<T> >( &var, { var } )
|
|
{ var = newValue; }
|
|
ValueRestorer(ValueRestorer &&that)
|
|
: std::unique_ptr < T, RestoreValue<T> > ( std::move(that) ) {};
|
|
ValueRestorer & operator= (ValueRestorer &&that)
|
|
{
|
|
if (this != &that)
|
|
std::unique_ptr < T, RestoreValue<T> >::operator=(std::move(that));
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
/// inline functions provide convenient parameter type deduction
|
|
template< typename T >
|
|
ValueRestorer< T > valueRestorer( T& var )
|
|
{ return ValueRestorer< T >{ var }; }
|
|
|
|
template< typename T >
|
|
ValueRestorer< T > valueRestorer( T& var, const T& newValue )
|
|
{ return ValueRestorer< T >{ var, newValue }; }
|
|
|
|
/**
|
|
\brief A convenience for defining iterators that return rvalue types, so that
|
|
they cooperate correctly with stl algorithms and std::reverse_iterator
|
|
*/
|
|
template< typename Value, typename Category = std::forward_iterator_tag >
|
|
using ValueIterator = std::iterator<
|
|
Category, const Value, ptrdiff_t,
|
|
// void pointer type so that operator -> is disabled
|
|
void,
|
|
// make "reference type" really the same as the value type
|
|
const Value
|
|
>;
|
|
|
|
/**
|
|
\brief A convenience for use with range-for
|
|
*/
|
|
template <typename Iterator>
|
|
struct IteratorRange : public std::pair<Iterator, Iterator> {
|
|
using iterator = Iterator;
|
|
using reverse_iterator = std::reverse_iterator<Iterator>;
|
|
|
|
IteratorRange (const Iterator &a, const Iterator &b)
|
|
: std::pair<Iterator, Iterator> ( a, b ) {}
|
|
|
|
IteratorRange (Iterator &&a, Iterator &&b)
|
|
: std::pair<Iterator, Iterator> ( std::move(a), std::move(b) ) {}
|
|
|
|
IteratorRange< reverse_iterator > reversal () const
|
|
{ return { this->rbegin(), this->rend() }; }
|
|
|
|
Iterator begin() const { return this->first; }
|
|
Iterator end() const { return this->second; }
|
|
|
|
reverse_iterator rbegin() const { return reverse_iterator{ this->second }; }
|
|
reverse_iterator rend() const { return reverse_iterator{ this->first }; }
|
|
|
|
bool empty() const { return this->begin() == this->end(); }
|
|
explicit operator bool () const { return !this->empty(); }
|
|
size_t size() const { return std::distance(this->begin(), this->end()); }
|
|
|
|
template <typename T> iterator find(const T &t) const
|
|
{ return std::find(this->begin(), this->end(), t); }
|
|
|
|
template <typename T> long index(const T &t) const
|
|
{
|
|
auto iter = this->find(t);
|
|
if (iter == this->end())
|
|
return -1;
|
|
return std::distance(this->begin(), iter);
|
|
}
|
|
|
|
template <typename T> bool contains(const T &t) const
|
|
{ return this->end() != this->find(t); }
|
|
|
|
template <typename F> iterator find_if(const F &f) const
|
|
{ return std::find_if(this->begin(), this->end(), f); }
|
|
|
|
template <typename F> long index_if(const F &f) const
|
|
{
|
|
auto iter = this->find_if(f);
|
|
if (iter == this->end())
|
|
return -1;
|
|
return std::distance(this->begin(), iter);
|
|
}
|
|
|
|
// to do: use std::all_of, any_of, none_of when available on all platforms
|
|
template <typename F> bool all_of(const F &f) const
|
|
{
|
|
auto notF =
|
|
[&](typename std::iterator_traits<Iterator>::reference v)
|
|
{ return !f(v); };
|
|
return !this->any_of( notF );
|
|
}
|
|
|
|
template <typename F> bool any_of(const F &f) const
|
|
{ return this->end() != this->find_if(f); }
|
|
|
|
template <typename F> bool none_of(const F &f) const
|
|
{ return !this->any_of(f); }
|
|
|
|
template<typename T> struct identity
|
|
{ const T&& operator () (T &&v) const { return std::forward(v); } };
|
|
|
|
// Like std::accumulate, but the iterators implied, and with another
|
|
// unary operation on the iterator value, pre-composed
|
|
template<
|
|
typename R,
|
|
typename Binary = std::plus< R >,
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >
|
|
>
|
|
R accumulate(
|
|
R init,
|
|
Binary binary_op = {},
|
|
Unary unary_op = {}
|
|
) const
|
|
{
|
|
R result = init;
|
|
for (auto&& v : *this)
|
|
result = binary_op(result, unary_op(v));
|
|
return result;
|
|
}
|
|
|
|
// An overload making it more convenient to use with pointers to member
|
|
// functions
|
|
template<
|
|
typename R,
|
|
typename Binary = std::plus< R >,
|
|
typename R2, typename C
|
|
>
|
|
R accumulate(
|
|
R init,
|
|
Binary binary_op,
|
|
R2 (C :: * pmf) () const
|
|
) const
|
|
{
|
|
return this->accumulate( init, binary_op, std::mem_fn( pmf ) );
|
|
}
|
|
|
|
// Some accumulations frequent enough to be worth abbreviation:
|
|
template<
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
|
|
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
|
|
>
|
|
R min( Unary unary_op = {} ) const
|
|
{
|
|
return this->accumulate(
|
|
std::numeric_limits< R >::max(),
|
|
(const R&(*)(const R&, const R&)) std::min,
|
|
unary_op
|
|
);
|
|
}
|
|
|
|
template<
|
|
typename R2, typename C,
|
|
typename R = R2
|
|
>
|
|
R min( R2 (C :: * pmf) () const ) const
|
|
{
|
|
return this->min( std::mem_fn( pmf ) );
|
|
}
|
|
|
|
template<
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
|
|
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
|
|
>
|
|
R max( Unary unary_op = {} ) const
|
|
{
|
|
return this->accumulate(
|
|
std::numeric_limits< R >::lowest(),
|
|
(const R&(*)(const R&, const R&)) std::max,
|
|
unary_op
|
|
);
|
|
}
|
|
|
|
template<
|
|
typename R2, typename C,
|
|
typename R = R2
|
|
>
|
|
R max( R2 (C :: * pmf) () const ) const
|
|
{
|
|
return this->max( std::mem_fn( pmf ) );
|
|
}
|
|
|
|
template<
|
|
typename Unary = identity< decltype( *std::declval<Iterator>() ) >,
|
|
typename R = decltype( std::declval<Unary>()( *std::declval<Iterator>() ) )
|
|
>
|
|
R sum( Unary unary_op = {} ) const
|
|
{
|
|
return this->accumulate(
|
|
R{ 0 },
|
|
std::plus< R >{},
|
|
unary_op
|
|
);
|
|
}
|
|
|
|
template<
|
|
typename R2, typename C,
|
|
typename R = R2
|
|
>
|
|
R sum( R2 (C :: * pmf) () const ) const
|
|
{
|
|
return this->sum( std::mem_fn( pmf ) );
|
|
}
|
|
};
|
|
|
|
template< typename Iterator>
|
|
IteratorRange< Iterator >
|
|
make_iterator_range( const Iterator &i1, const Iterator &i2 )
|
|
{
|
|
return { i1, i2 };
|
|
}
|
|
|
|
template< typename Container >
|
|
IteratorRange< typename Container::iterator >
|
|
make_iterator_range( Container &container )
|
|
{
|
|
return { container.begin(), container.end() };
|
|
}
|
|
|
|
template< typename Container >
|
|
IteratorRange< typename Container::const_iterator >
|
|
make_iterator_range( const Container &container )
|
|
{
|
|
return { container.begin(), container.end() };
|
|
}
|
|
|
|
// A utility function building a container of results
|
|
template< typename Container, typename Iterator, typename Function >
|
|
Container transform_range( Iterator first, Iterator last, Function &&fn )
|
|
{
|
|
Container result;
|
|
std::transform( first, last, std::back_inserter( result ), fn );
|
|
return result;
|
|
}
|
|
// A utility function, often constructing a vector from another vector
|
|
template< typename OutContainer, typename InContainer, typename Function >
|
|
OutContainer transform_container( InContainer &inContainer, Function &&fn )
|
|
{
|
|
return transform_range<OutContainer>(
|
|
inContainer.begin(), inContainer.end(), fn );
|
|
}
|
|
|
|
// Extend wxArrayString with move operations and construction and insertion from
|
|
// std::initializer_list
|
|
class wxArrayStringEx : public wxArrayString
|
|
{
|
|
public:
|
|
using wxArrayString::wxArrayString;
|
|
wxArrayStringEx() = default;
|
|
|
|
template< typename Iterator >
|
|
wxArrayStringEx( Iterator start, Iterator finish )
|
|
{
|
|
this->reserve( std::distance( start, finish ) );
|
|
while( start != finish )
|
|
this->push_back( *start++ );
|
|
}
|
|
|
|
template< typename T >
|
|
wxArrayStringEx( std::initializer_list< T > items )
|
|
{
|
|
this->reserve( this->size() + items.size() );
|
|
for ( const auto &item : items )
|
|
this->push_back( item );
|
|
}
|
|
|
|
// The move operations can take arguments of the base class wxArrayString
|
|
wxArrayStringEx( wxArrayString &&other )
|
|
{
|
|
swap( other );
|
|
}
|
|
|
|
wxArrayStringEx &operator= ( wxArrayString &&other )
|
|
{
|
|
if ( this != &other ) {
|
|
clear();
|
|
swap( other );
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
using wxArrayString::insert;
|
|
|
|
template< typename T >
|
|
iterator insert( const_iterator pos, std::initializer_list< T > items )
|
|
{
|
|
const auto index = pos - ((const wxArrayString*)this)->begin();
|
|
this->wxArrayString::Insert( {}, index, items.size() );
|
|
auto result = this->begin() + index, iter = result;
|
|
for ( auto pItem = items.begin(), pEnd = items.end();
|
|
pItem != pEnd;
|
|
++pItem, ++iter
|
|
) {
|
|
*iter = *pItem;
|
|
}
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#endif // __AUDACITY_MEMORY_X_H__
|