mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-07 15:22:34 +02:00
838 lines
26 KiB
C++
838 lines
26 KiB
C++
/**********************************************************************
|
|
|
|
Audacity: A Digital Audio Editor
|
|
|
|
Mix.cpp
|
|
|
|
Dominic Mazzoni
|
|
Markus Meyer
|
|
Vaughan Johnson
|
|
|
|
*******************************************************************//**
|
|
|
|
\class Mixer
|
|
\brief Functions for doing the mixdown of the tracks.
|
|
|
|
*//****************************************************************//**
|
|
|
|
\class MixerSpec
|
|
\brief Class used with Mixer.
|
|
|
|
*//*******************************************************************/
|
|
|
|
|
|
#include "Audacity.h"
|
|
#include "Mix.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <wx/textctrl.h>
|
|
#include <wx/progdlg.h>
|
|
#include <wx/timer.h>
|
|
#include <wx/intl.h>
|
|
|
|
#include "Envelope.h"
|
|
#include "WaveTrack.h"
|
|
#include "Prefs.h"
|
|
#include "Resample.h"
|
|
#include "TimeTrack.h"
|
|
#include "float_cast.h"
|
|
|
|
#include "widgets/ProgressDialog.h"
|
|
|
|
//TODO-MB: wouldn't it make more sense to DELETE the time track after 'mix and render'?
|
|
void MixAndRender(TrackList *tracks, TrackFactory *trackFactory,
|
|
double rate, sampleFormat format,
|
|
double startTime, double endTime,
|
|
WaveTrack::Holder &uLeft, WaveTrack::Holder &uRight)
|
|
{
|
|
uLeft.reset(), uRight.reset();
|
|
|
|
// This function was formerly known as "Quick Mix".
|
|
bool mono = false; /* flag if output can be mono without loosing anything*/
|
|
bool oneinput = false; /* flag set to true if there is only one input track
|
|
(mono or stereo) */
|
|
|
|
const auto trackRange = tracks->Selected< const WaveTrack >();
|
|
auto first = *trackRange.begin();
|
|
// this only iterates tracks which are relevant to this function, i.e.
|
|
// selected WaveTracks. The tracklist is (confusingly) the list of all
|
|
// tracks in the project
|
|
|
|
int numWaves = 0; /* number of wave tracks in the selection */
|
|
int numMono = 0; /* number of mono, centre-panned wave tracks in selection*/
|
|
for(auto wt : trackRange) {
|
|
numWaves++;
|
|
float pan = wt->GetPan();
|
|
if (wt->GetChannel() == Track::MonoChannel && pan == 0)
|
|
numMono++;
|
|
}
|
|
|
|
if (numMono == numWaves)
|
|
mono = true;
|
|
|
|
/* the next loop will do two things at once:
|
|
* 1. build an array of all the wave tracks were are trying to process
|
|
* 2. determine when the set of WaveTracks starts and ends, in case we
|
|
* need to work out for ourselves when to start and stop rendering.
|
|
*/
|
|
|
|
double mixStartTime = 0.0; /* start time of first track to start */
|
|
bool gotstart = false; // flag indicates we have found a start time
|
|
double mixEndTime = 0.0; /* end time of last track to end */
|
|
double tstart, tend; // start and end times for one track.
|
|
|
|
WaveTrackConstArray waveArray;
|
|
|
|
for(auto wt : trackRange) {
|
|
waveArray.push_back( wt->SharedPointer< const WaveTrack >() );
|
|
tstart = wt->GetStartTime();
|
|
tend = wt->GetEndTime();
|
|
if (tend > mixEndTime)
|
|
mixEndTime = tend;
|
|
// try and get the start time. If the track is empty we will get 0,
|
|
// which is ambiguous because it could just mean the track starts at
|
|
// the beginning of the project, as well as empty track. The give-away
|
|
// is that an empty track also ends at zero.
|
|
|
|
if (tstart != tend) {
|
|
// we don't get empty tracks here
|
|
if (!gotstart) {
|
|
// no previous start, use this one unconditionally
|
|
mixStartTime = tstart;
|
|
gotstart = true;
|
|
} else if (tstart < mixStartTime)
|
|
mixStartTime = tstart; // have a start, only make it smaller
|
|
} // end if start and end are different
|
|
}
|
|
|
|
/* create the destination track (NEW track) */
|
|
if (numWaves == (int)TrackList::Channels(first).size())
|
|
oneinput = true;
|
|
// only one input track (either 1 mono or one linked stereo pair)
|
|
|
|
auto mixLeft = trackFactory->NewWaveTrack(format, rate);
|
|
if (oneinput)
|
|
mixLeft->SetName(first->GetName()); /* set name of output track to be the same as the sole input track */
|
|
else
|
|
mixLeft->SetName(_("Mix"));
|
|
mixLeft->SetOffset(mixStartTime);
|
|
|
|
// TODO: more-than-two-channels
|
|
decltype(mixLeft) mixRight{};
|
|
if ( !mono ) {
|
|
mixRight = trackFactory->NewWaveTrack(format, rate);
|
|
if (oneinput) {
|
|
auto channels = TrackList::Channels(first);
|
|
if (channels.size() > 1)
|
|
mixRight->SetName((*channels.begin().advance(1))->GetName()); /* set name to match input track's right channel!*/
|
|
else
|
|
mixRight->SetName(first->GetName()); /* set name to that of sole input channel */
|
|
}
|
|
else
|
|
mixRight->SetName(_("Mix"));
|
|
mixRight->SetOffset(mixStartTime);
|
|
}
|
|
|
|
|
|
auto maxBlockLen = mixLeft->GetIdealBlockSize();
|
|
|
|
// If the caller didn't specify a time range, use the whole range in which
|
|
// any input track had clips in it.
|
|
if (startTime == endTime) {
|
|
startTime = mixStartTime;
|
|
endTime = mixEndTime;
|
|
}
|
|
|
|
auto timeTrack = *tracks->Any<TimeTrack>().begin();
|
|
Mixer mixer(waveArray,
|
|
// Throw to abort mix-and-render if read fails:
|
|
true,
|
|
Mixer::WarpOptions(timeTrack ? timeTrack->GetEnvelope() : nullptr),
|
|
startTime, endTime, mono ? 1 : 2, maxBlockLen, false,
|
|
rate, format);
|
|
|
|
::wxSafeYield();
|
|
|
|
auto updateResult = ProgressResult::Success;
|
|
{
|
|
ProgressDialog progress(_("Mix and Render"),
|
|
_("Mixing and rendering tracks"));
|
|
|
|
while (updateResult == ProgressResult::Success) {
|
|
auto blockLen = mixer.Process(maxBlockLen);
|
|
|
|
if (blockLen == 0)
|
|
break;
|
|
|
|
if (mono) {
|
|
samplePtr buffer = mixer.GetBuffer();
|
|
mixLeft->Append(buffer, format, blockLen);
|
|
}
|
|
else {
|
|
samplePtr buffer;
|
|
buffer = mixer.GetBuffer(0);
|
|
mixLeft->Append(buffer, format, blockLen);
|
|
buffer = mixer.GetBuffer(1);
|
|
mixRight->Append(buffer, format, blockLen);
|
|
}
|
|
|
|
updateResult = progress.Update(mixer.MixGetCurrentTime() - startTime, endTime - startTime);
|
|
}
|
|
}
|
|
|
|
mixLeft->Flush();
|
|
if (!mono)
|
|
mixRight->Flush();
|
|
if (updateResult == ProgressResult::Cancelled || updateResult == ProgressResult::Failed)
|
|
{
|
|
return;
|
|
}
|
|
else {
|
|
uLeft = mixLeft, uRight = mixRight;
|
|
#if 0
|
|
int elapsedMS = wxGetElapsedTime();
|
|
double elapsedTime = elapsedMS * 0.001;
|
|
double maxTracks = totalTime / (elapsedTime / numWaves);
|
|
|
|
// Note: these shouldn't be translated - they're for debugging
|
|
// and profiling only.
|
|
wxPrintf(" Tracks: %d\n", numWaves);
|
|
wxPrintf(" Mix length: %f sec\n", totalTime);
|
|
wxPrintf("Elapsed time: %f sec\n", elapsedTime);
|
|
wxPrintf("Max number of tracks to mix in real time: %f\n", maxTracks);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
Mixer::WarpOptions::WarpOptions(double min, double max)
|
|
: minSpeed(min), maxSpeed(max)
|
|
{
|
|
if (minSpeed < 0)
|
|
{
|
|
wxASSERT(false);
|
|
minSpeed = 0;
|
|
}
|
|
if (maxSpeed < 0)
|
|
{
|
|
wxASSERT(false);
|
|
maxSpeed = 0;
|
|
}
|
|
if (minSpeed > maxSpeed)
|
|
{
|
|
wxASSERT(false);
|
|
std::swap(minSpeed, maxSpeed);
|
|
}
|
|
}
|
|
|
|
Mixer::Mixer(const WaveTrackConstArray &inputTracks,
|
|
bool mayThrow,
|
|
const WarpOptions &warpOptions,
|
|
double startTime, double stopTime,
|
|
unsigned numOutChannels, size_t outBufferSize, bool outInterleaved,
|
|
double outRate, sampleFormat outFormat,
|
|
bool highQuality, MixerSpec *mixerSpec)
|
|
: mNumInputTracks { inputTracks.size() }
|
|
|
|
// This is the number of samples grabbed in one go from a track
|
|
// and placed in a queue, when mixing with resampling.
|
|
// (Should we use WaveTrack::GetBestBlockSize instead?)
|
|
, mQueueMaxLen{ 65536 }
|
|
, mSampleQueue{ mNumInputTracks, mQueueMaxLen }
|
|
|
|
, mNumChannels{ numOutChannels }
|
|
, mGains{ mNumChannels }
|
|
|
|
, mMayThrow{ mayThrow }
|
|
{
|
|
mHighQuality = highQuality;
|
|
mInputTrack.reinit(mNumInputTracks);
|
|
|
|
// mSamplePos holds for each track the next sample position not
|
|
// yet processed.
|
|
mSamplePos.reinit(mNumInputTracks);
|
|
for(size_t i=0; i<mNumInputTracks; i++) {
|
|
mInputTrack[i].SetTrack(inputTracks[i]);
|
|
mSamplePos[i] = inputTracks[i]->TimeToLongSamples(startTime);
|
|
}
|
|
mEnvelope = warpOptions.envelope;
|
|
mT0 = startTime;
|
|
mT1 = stopTime;
|
|
mTime = startTime;
|
|
mBufferSize = outBufferSize;
|
|
mInterleaved = outInterleaved;
|
|
mRate = outRate;
|
|
mSpeed = 1.0;
|
|
mFormat = outFormat;
|
|
mApplyTrackGains = true;
|
|
if( mixerSpec && mixerSpec->GetNumChannels() == mNumChannels &&
|
|
mixerSpec->GetNumTracks() == mNumInputTracks )
|
|
mMixerSpec = mixerSpec;
|
|
else
|
|
mMixerSpec = NULL;
|
|
|
|
if (mInterleaved) {
|
|
mNumBuffers = 1;
|
|
mInterleavedBufferSize = mBufferSize * mNumChannels;
|
|
}
|
|
else {
|
|
mNumBuffers = mNumChannels;
|
|
mInterleavedBufferSize = mBufferSize;
|
|
}
|
|
|
|
mBuffer.reinit(mNumBuffers);
|
|
mTemp.reinit(mNumBuffers);
|
|
for (unsigned int c = 0; c < mNumBuffers; c++) {
|
|
mBuffer[c].Allocate(mInterleavedBufferSize, mFormat);
|
|
mTemp[c].Allocate(mInterleavedBufferSize, floatSample);
|
|
}
|
|
mFloatBuffer = Floats{ mInterleavedBufferSize };
|
|
|
|
// But cut the queue into blocks of this finer size
|
|
// for variable rate resampling. Each block is resampled at some
|
|
// constant rate.
|
|
mProcessLen = 1024;
|
|
|
|
// Position in each queue of the start of the next block to resample.
|
|
mQueueStart.reinit(mNumInputTracks);
|
|
|
|
// For each queue, the number of available samples after the queue start.
|
|
mQueueLen.reinit(mNumInputTracks);
|
|
mResample.reinit(mNumInputTracks);
|
|
mMinFactor.resize(mNumInputTracks);
|
|
mMaxFactor.resize(mNumInputTracks);
|
|
for (size_t i = 0; i<mNumInputTracks; i++) {
|
|
double factor = (mRate / mInputTrack[i].GetTrack()->GetRate());
|
|
if (mEnvelope) {
|
|
// variable rate resampling
|
|
mbVariableRates = true;
|
|
mMinFactor[i] = factor / mEnvelope->GetRangeUpper();
|
|
mMaxFactor[i] = factor / mEnvelope->GetRangeLower();
|
|
}
|
|
else if (warpOptions.minSpeed > 0.0 && warpOptions.maxSpeed > 0.0) {
|
|
// variable rate resampling
|
|
mbVariableRates = true;
|
|
mMinFactor[i] = factor / warpOptions.maxSpeed;
|
|
mMaxFactor[i] = factor / warpOptions.minSpeed;
|
|
}
|
|
else {
|
|
// constant rate resampling
|
|
mbVariableRates = false;
|
|
mMinFactor[i] = mMaxFactor[i] = factor;
|
|
}
|
|
|
|
mQueueStart[i] = 0;
|
|
mQueueLen[i] = 0;
|
|
}
|
|
|
|
MakeResamplers();
|
|
|
|
const auto envLen = std::max(mQueueMaxLen, mInterleavedBufferSize);
|
|
mEnvValues.reinit(envLen);
|
|
}
|
|
|
|
Mixer::~Mixer()
|
|
{
|
|
}
|
|
|
|
void Mixer::MakeResamplers()
|
|
{
|
|
for (size_t i = 0; i < mNumInputTracks; i++)
|
|
mResample[i] = std::make_unique<Resample>(mHighQuality, mMinFactor[i], mMaxFactor[i]);
|
|
}
|
|
|
|
void Mixer::ApplyTrackGains(bool apply)
|
|
{
|
|
mApplyTrackGains = apply;
|
|
}
|
|
|
|
void Mixer::Clear()
|
|
{
|
|
for (unsigned int c = 0; c < mNumBuffers; c++) {
|
|
memset(mTemp[c].ptr(), 0, mInterleavedBufferSize * SAMPLE_SIZE(floatSample));
|
|
}
|
|
}
|
|
|
|
void MixBuffers(unsigned numChannels, int *channelFlags, float *gains,
|
|
samplePtr src, SampleBuffer *dests,
|
|
int len, bool interleaved)
|
|
{
|
|
for (unsigned int c = 0; c < numChannels; c++) {
|
|
if (!channelFlags[c])
|
|
continue;
|
|
|
|
samplePtr destPtr;
|
|
unsigned skip;
|
|
|
|
if (interleaved) {
|
|
destPtr = dests[0].ptr() + c*SAMPLE_SIZE(floatSample);
|
|
skip = numChannels;
|
|
} else {
|
|
destPtr = dests[c].ptr();
|
|
skip = 1;
|
|
}
|
|
|
|
float gain = gains[c];
|
|
float *dest = (float *)destPtr;
|
|
float *temp = (float *)src;
|
|
for (int j = 0; j < len; j++) {
|
|
*dest += temp[j] * gain; // the actual mixing process
|
|
dest += skip;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
//Note: The meaning of this function has changed (December 2012)
|
|
//Previously this function did something that was close to the opposite (but not entirely accurate).
|
|
/** @brief Compute the integral warp factor between two non-warped time points
|
|
*
|
|
* Calculate the relative length increase of the chosen segment from the original sound.
|
|
* So if this time track has a low value (i.e. makes the sound slower), the NEW warped
|
|
* sound will be *longer* than the original sound, so the return value of this function
|
|
* is larger.
|
|
* @param t0 The starting time to calculate from
|
|
* @param t1 The ending time to calculate to
|
|
* @return The relative length increase of the chosen segment from the original sound.
|
|
*/
|
|
double ComputeWarpFactor(const Envelope &env, double t0, double t1)
|
|
{
|
|
return env.AverageOfInverse(t0, t1);
|
|
}
|
|
|
|
}
|
|
|
|
size_t Mixer::MixVariableRates(int *channelFlags, WaveTrackCache &cache,
|
|
sampleCount *pos, float *queue,
|
|
int *queueStart, int *queueLen,
|
|
Resample * pResample)
|
|
{
|
|
const WaveTrack *const track = cache.GetTrack().get();
|
|
const double trackRate = track->GetRate();
|
|
const double initialWarp = mRate / mSpeed / trackRate;
|
|
const double tstep = 1.0 / trackRate;
|
|
auto sampleSize = SAMPLE_SIZE(floatSample);
|
|
|
|
decltype(mMaxOut) out = 0;
|
|
|
|
/* time is floating point. Sample rate is integer. The number of samples
|
|
* has to be integer, but the multiplication gives a float result, which we
|
|
* round to get an integer result. TODO: is this always right or can it be
|
|
* off by one sometimes? Can we not get this information directly from the
|
|
* clip (which must know) rather than convert the time?
|
|
*
|
|
* LLL: Not at this time. While WaveClips provide methods to retrieve the
|
|
* start and end sample, they do the same float->sampleCount conversion
|
|
* to calculate the position.
|
|
*/
|
|
|
|
// Find the last sample
|
|
double endTime = track->GetEndTime();
|
|
double startTime = track->GetStartTime();
|
|
const bool backwards = (mT1 < mT0);
|
|
const double tEnd = backwards
|
|
? std::max(startTime, mT1)
|
|
: std::min(endTime, mT1);
|
|
const auto endPos = track->TimeToLongSamples(tEnd);
|
|
// Find the time corresponding to the start of the queue, for use with time track
|
|
double t = ((*pos).as_long_long() +
|
|
(backwards ? *queueLen : - *queueLen)) / trackRate;
|
|
|
|
while (out < mMaxOut) {
|
|
if (*queueLen < (int)mProcessLen) {
|
|
// Shift pending portion to start of the buffer
|
|
memmove(queue, &queue[*queueStart], (*queueLen) * sampleSize);
|
|
*queueStart = 0;
|
|
|
|
auto getLen = limitSampleBufferSize(
|
|
mQueueMaxLen - *queueLen,
|
|
backwards ? *pos - endPos : endPos - *pos
|
|
);
|
|
|
|
// Nothing to do if past end of play interval
|
|
if (getLen > 0) {
|
|
if (backwards) {
|
|
auto results = cache.Get(floatSample, *pos - (getLen - 1), getLen, mMayThrow);
|
|
if (results)
|
|
memcpy(&queue[*queueLen], results, sizeof(float) * getLen);
|
|
else
|
|
memset(&queue[*queueLen], 0, sizeof(float) * getLen);
|
|
|
|
track->GetEnvelopeValues(mEnvValues.get(),
|
|
getLen,
|
|
(*pos - (getLen- 1)).as_double() / trackRate);
|
|
*pos -= getLen;
|
|
}
|
|
else {
|
|
auto results = cache.Get(floatSample, *pos, getLen, mMayThrow);
|
|
if (results)
|
|
memcpy(&queue[*queueLen], results, sizeof(float) * getLen);
|
|
else
|
|
memset(&queue[*queueLen], 0, sizeof(float) * getLen);
|
|
|
|
track->GetEnvelopeValues(mEnvValues.get(),
|
|
getLen,
|
|
(*pos).as_double() / trackRate);
|
|
|
|
*pos += getLen;
|
|
}
|
|
|
|
for (decltype(getLen) i = 0; i < getLen; i++) {
|
|
queue[(*queueLen) + i] *= mEnvValues[i];
|
|
}
|
|
|
|
if (backwards)
|
|
ReverseSamples((samplePtr)&queue[0], floatSample,
|
|
*queueLen, getLen);
|
|
|
|
*queueLen += getLen;
|
|
}
|
|
}
|
|
|
|
auto thisProcessLen = mProcessLen;
|
|
bool last = (*queueLen < (int)mProcessLen);
|
|
if (last) {
|
|
thisProcessLen = *queueLen;
|
|
}
|
|
|
|
double factor = initialWarp;
|
|
if (mEnvelope)
|
|
{
|
|
//TODO-MB: The end time is wrong when the resampler doesn't use all input samples,
|
|
// as a result of this the warp factor may be slightly wrong, so AudioIO will stop too soon
|
|
// or too late (resulting in missing sound or inserted silence). This can't be fixed
|
|
// without changing the way the resampler works, because the number of input samples that will be used
|
|
// is unpredictable. Maybe it can be compensated later though.
|
|
if (backwards)
|
|
factor *= ComputeWarpFactor( *mEnvelope,
|
|
t - (double)thisProcessLen / trackRate + tstep, t + tstep);
|
|
else
|
|
factor *= ComputeWarpFactor( *mEnvelope,
|
|
t, t + (double)thisProcessLen / trackRate);
|
|
}
|
|
|
|
auto results = pResample->Process(factor,
|
|
&queue[*queueStart],
|
|
thisProcessLen,
|
|
last,
|
|
&mFloatBuffer[out],
|
|
mMaxOut - out);
|
|
|
|
const auto input_used = results.first;
|
|
*queueStart += input_used;
|
|
*queueLen -= input_used;
|
|
out += results.second;
|
|
t += (input_used / trackRate) * (backwards ? -1 : 1);
|
|
|
|
if (last) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (size_t c = 0; c < mNumChannels; c++) {
|
|
if (mApplyTrackGains) {
|
|
mGains[c] = track->GetChannelGain(c);
|
|
}
|
|
else {
|
|
mGains[c] = 1.0;
|
|
}
|
|
}
|
|
|
|
MixBuffers(mNumChannels,
|
|
channelFlags,
|
|
mGains.get(),
|
|
(samplePtr)mFloatBuffer.get(),
|
|
mTemp.get(),
|
|
out,
|
|
mInterleaved);
|
|
|
|
return out;
|
|
}
|
|
|
|
size_t Mixer::MixSameRate(int *channelFlags, WaveTrackCache &cache,
|
|
sampleCount *pos)
|
|
{
|
|
const WaveTrack *const track = cache.GetTrack().get();
|
|
const double t = ( *pos ).as_double() / track->GetRate();
|
|
const double trackEndTime = track->GetEndTime();
|
|
const double trackStartTime = track->GetStartTime();
|
|
const bool backwards = (mT1 < mT0);
|
|
const double tEnd = backwards
|
|
? std::max(trackStartTime, mT1)
|
|
: std::min(trackEndTime, mT1);
|
|
|
|
//don't process if we're at the end of the selection or track.
|
|
if ((backwards ? t <= tEnd : t >= tEnd))
|
|
return 0;
|
|
//if we're about to approach the end of the track or selection, figure out how much we need to grab
|
|
auto slen = limitSampleBufferSize(
|
|
mMaxOut,
|
|
// PRL: maybe t and tEnd should be given as sampleCount instead to
|
|
// avoid trouble subtracting one large value from another for a small
|
|
// difference
|
|
sampleCount{ (backwards ? t - tEnd : tEnd - t) * track->GetRate() + 0.5 }
|
|
);
|
|
|
|
if (backwards) {
|
|
auto results = cache.Get(floatSample, *pos - (slen - 1), slen, mMayThrow);
|
|
if (results)
|
|
memcpy(mFloatBuffer.get(), results, sizeof(float) * slen);
|
|
else
|
|
memset(mFloatBuffer.get(), 0, sizeof(float) * slen);
|
|
track->GetEnvelopeValues(mEnvValues.get(), slen, t - (slen - 1) / mRate);
|
|
for(decltype(slen) i = 0; i < slen; i++)
|
|
mFloatBuffer[i] *= mEnvValues[i]; // Track gain control will go here?
|
|
ReverseSamples((samplePtr)mFloatBuffer.get(), floatSample, 0, slen);
|
|
|
|
*pos -= slen;
|
|
}
|
|
else {
|
|
auto results = cache.Get(floatSample, *pos, slen, mMayThrow);
|
|
if (results)
|
|
memcpy(mFloatBuffer.get(), results, sizeof(float) * slen);
|
|
else
|
|
memset(mFloatBuffer.get(), 0, sizeof(float) * slen);
|
|
track->GetEnvelopeValues(mEnvValues.get(), slen, t);
|
|
for(decltype(slen) i = 0; i < slen; i++)
|
|
mFloatBuffer[i] *= mEnvValues[i]; // Track gain control will go here?
|
|
|
|
*pos += slen;
|
|
}
|
|
|
|
for(size_t c=0; c<mNumChannels; c++)
|
|
if (mApplyTrackGains)
|
|
mGains[c] = track->GetChannelGain(c);
|
|
else
|
|
mGains[c] = 1.0;
|
|
|
|
MixBuffers(mNumChannels, channelFlags, mGains.get(),
|
|
(samplePtr)mFloatBuffer.get(), mTemp.get(), slen, mInterleaved);
|
|
|
|
return slen;
|
|
}
|
|
|
|
size_t Mixer::Process(size_t maxToProcess)
|
|
{
|
|
// MB: this is wrong! mT represented warped time, and mTime is too inaccurate to use
|
|
// it here. It's also unnecessary I think.
|
|
//if (mT >= mT1)
|
|
// return 0;
|
|
|
|
decltype(Process(0)) maxOut = 0;
|
|
ArrayOf<int> channelFlags{ mNumChannels };
|
|
|
|
mMaxOut = maxToProcess;
|
|
|
|
Clear();
|
|
for(size_t i=0; i<mNumInputTracks; i++) {
|
|
const WaveTrack *const track = mInputTrack[i].GetTrack().get();
|
|
for(size_t j=0; j<mNumChannels; j++)
|
|
channelFlags[j] = 0;
|
|
|
|
if( mMixerSpec ) {
|
|
//ignore left and right when downmixing is not required
|
|
for(size_t j = 0; j < mNumChannels; j++ )
|
|
channelFlags[ j ] = mMixerSpec->mMap[ i ][ j ] ? 1 : 0;
|
|
}
|
|
else {
|
|
switch(track->GetChannel()) {
|
|
case Track::MonoChannel:
|
|
default:
|
|
for(size_t j=0; j<mNumChannels; j++)
|
|
channelFlags[j] = 1;
|
|
break;
|
|
case Track::LeftChannel:
|
|
channelFlags[0] = 1;
|
|
break;
|
|
case Track::RightChannel:
|
|
if (mNumChannels >= 2)
|
|
channelFlags[1] = 1;
|
|
else
|
|
channelFlags[0] = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (mbVariableRates || track->GetRate() != mRate)
|
|
maxOut = std::max(maxOut,
|
|
MixVariableRates(channelFlags.get(), mInputTrack[i],
|
|
&mSamplePos[i], mSampleQueue[i].get(),
|
|
&mQueueStart[i], &mQueueLen[i], mResample[i].get()));
|
|
else
|
|
maxOut = std::max(maxOut,
|
|
MixSameRate(channelFlags.get(), mInputTrack[i], &mSamplePos[i]));
|
|
|
|
double t = mSamplePos[i].as_double() / (double)track->GetRate();
|
|
if (mT0 > mT1)
|
|
// backwards (as possibly in scrubbing)
|
|
mTime = std::max(std::min(t, mTime), mT1);
|
|
else
|
|
// forwards (the usual)
|
|
mTime = std::min(std::max(t, mTime), mT1);
|
|
}
|
|
if(mInterleaved) {
|
|
for(size_t c=0; c<mNumChannels; c++) {
|
|
CopySamples(mTemp[0].ptr() + (c * SAMPLE_SIZE(floatSample)),
|
|
floatSample,
|
|
mBuffer[0].ptr() + (c * SAMPLE_SIZE(mFormat)),
|
|
mFormat,
|
|
maxOut,
|
|
mHighQuality,
|
|
mNumChannels,
|
|
mNumChannels);
|
|
}
|
|
}
|
|
else {
|
|
for(size_t c=0; c<mNumBuffers; c++) {
|
|
CopySamples(mTemp[c].ptr(),
|
|
floatSample,
|
|
mBuffer[c].ptr(),
|
|
mFormat,
|
|
maxOut,
|
|
mHighQuality);
|
|
}
|
|
}
|
|
// MB: this doesn't take warping into account, replaced with code based on mSamplePos
|
|
//mT += (maxOut / mRate);
|
|
|
|
return maxOut;
|
|
}
|
|
|
|
samplePtr Mixer::GetBuffer()
|
|
{
|
|
return mBuffer[0].ptr();
|
|
}
|
|
|
|
samplePtr Mixer::GetBuffer(int channel)
|
|
{
|
|
return mBuffer[channel].ptr();
|
|
}
|
|
|
|
double Mixer::MixGetCurrentTime()
|
|
{
|
|
return mTime;
|
|
}
|
|
|
|
void Mixer::Restart()
|
|
{
|
|
mTime = mT0;
|
|
|
|
for(size_t i=0; i<mNumInputTracks; i++)
|
|
mSamplePos[i] = mInputTrack[i].GetTrack()->TimeToLongSamples(mT0);
|
|
|
|
for(size_t i=0; i<mNumInputTracks; i++) {
|
|
mQueueStart[i] = 0;
|
|
mQueueLen[i] = 0;
|
|
}
|
|
|
|
// Bug 1887: libsoxr 0.1.3, first used in Audacity 2.3.0, crashes with
|
|
// constant rate resampling if you try to reuse the resampler after it has
|
|
// flushed. Should that be considered a bug in sox? This works around it:
|
|
MakeResamplers();
|
|
}
|
|
|
|
void Mixer::Reposition(double t, bool bSkipping)
|
|
{
|
|
mTime = t;
|
|
const bool backwards = (mT1 < mT0);
|
|
if (backwards)
|
|
mTime = std::max(mT1, (std::min(mT0, mTime)));
|
|
else
|
|
mTime = std::max(mT0, (std::min(mT1, mTime)));
|
|
|
|
for(size_t i=0; i<mNumInputTracks; i++) {
|
|
mSamplePos[i] = mInputTrack[i].GetTrack()->TimeToLongSamples(mTime);
|
|
mQueueStart[i] = 0;
|
|
mQueueLen[i] = 0;
|
|
}
|
|
|
|
// Bug 2025: libsoxr 0.1.3, first used in Audacity 2.3.0, crashes with
|
|
// constant rate resampling if you try to reuse the resampler after it has
|
|
// flushed. Should that be considered a bug in sox? This works around it.
|
|
// (See also bug 1887, and the same work around in Mixer::Restart().)
|
|
if( bSkipping )
|
|
MakeResamplers();
|
|
}
|
|
|
|
void Mixer::SetTimesAndSpeed(double t0, double t1, double speed)
|
|
{
|
|
wxASSERT(std::isfinite(speed));
|
|
mT0 = t0;
|
|
mT1 = t1;
|
|
mSpeed = fabs(speed);
|
|
Reposition(t0);
|
|
}
|
|
|
|
MixerSpec::MixerSpec( unsigned numTracks, unsigned maxNumChannels )
|
|
{
|
|
mNumTracks = mNumChannels = numTracks;
|
|
mMaxNumChannels = maxNumChannels;
|
|
|
|
if( mNumChannels > mMaxNumChannels )
|
|
mNumChannels = mMaxNumChannels;
|
|
|
|
Alloc();
|
|
|
|
for( unsigned int i = 0; i < mNumTracks; i++ )
|
|
for( unsigned int j = 0; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = ( i == j );
|
|
}
|
|
|
|
MixerSpec::MixerSpec( const MixerSpec &mixerSpec )
|
|
{
|
|
mNumTracks = mixerSpec.mNumTracks;
|
|
mMaxNumChannels = mixerSpec.mMaxNumChannels;
|
|
mNumChannels = mixerSpec.mNumChannels;
|
|
|
|
Alloc();
|
|
|
|
for( unsigned int i = 0; i < mNumTracks; i++ )
|
|
for( unsigned int j = 0; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = mixerSpec.mMap[ i ][ j ];
|
|
}
|
|
|
|
void MixerSpec::Alloc()
|
|
{
|
|
mMap.reinit(mNumTracks, mMaxNumChannels);
|
|
}
|
|
|
|
MixerSpec::~MixerSpec()
|
|
{
|
|
}
|
|
|
|
bool MixerSpec::SetNumChannels( unsigned newNumChannels )
|
|
{
|
|
if( mNumChannels == newNumChannels )
|
|
return true;
|
|
|
|
if( newNumChannels > mMaxNumChannels )
|
|
return false;
|
|
|
|
for( unsigned int i = 0; i < mNumTracks; i++ )
|
|
{
|
|
for( unsigned int j = newNumChannels; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = false;
|
|
|
|
for( unsigned int j = mNumChannels; j < newNumChannels; j++ )
|
|
mMap[ i ][ j ] = false;
|
|
}
|
|
|
|
mNumChannels = newNumChannels;
|
|
return true;
|
|
}
|
|
|
|
MixerSpec& MixerSpec::operator=( const MixerSpec &mixerSpec )
|
|
{
|
|
mNumTracks = mixerSpec.mNumTracks;
|
|
mNumChannels = mixerSpec.mNumChannels;
|
|
mMaxNumChannels = mixerSpec.mMaxNumChannels;
|
|
|
|
Alloc();
|
|
|
|
for( unsigned int i = 0; i < mNumTracks; i++ )
|
|
for( unsigned int j = 0; j < mNumChannels; j++ )
|
|
mMap[ i ][ j ] = mixerSpec.mMap[ i ][ j ];
|
|
|
|
return *this;
|
|
}
|
|
|