#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "partial.h" void partial_free(snd_susp_type a_susp); typedef struct partial_susp_struct { snd_susp_node susp; boolean started; int64_t terminate_cnt; boolean logically_stopped; sound_type env; int env_cnt; sample_block_values_type env_ptr; /* support for interpolation of env */ sample_type env_x1_sample; double env_pHaSe; double env_pHaSe_iNcR; /* support for ramp between samples of env */ double output_per_env; int64_t env_n; long phase; long ph_incr; } partial_susp_node, *partial_susp_type; #include "sine.h" void partial_n_fetch(snd_susp_type a_susp, snd_list_type snd_list) { partial_susp_type susp = (partial_susp_type) a_susp; int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long phase_reg; register long ph_incr_reg; register sample_block_values_type env_ptr_reg; falloc_sample_block(out, "partial_n_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the env input sample block: */ susp_check_term_log_samples(env, env_ptr, env_cnt); togo = min(togo, susp->env_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < 0) to_stop = 0; /* avoids rounding errors */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = (int) to_stop; } } n = togo; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; env_ptr_reg = susp->env_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = sine_table[phase_reg >> SINE_TABLE_SHIFT] * (sample_type) *env_ptr_reg++; phase_reg += ph_incr_reg; phase_reg &= SINE_TABLE_MASK;; } while (--n); /* inner loop */ susp->phase = (susp->phase + susp->ph_incr * togo) & SINE_TABLE_MASK; /* using env_ptr_reg is a bad idea on RS/6000: */ susp->env_ptr += togo; out_ptr += togo; susp_took(env_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* partial_n_fetch */ void partial_s_fetch(snd_susp_type a_susp, snd_list_type snd_list) { partial_susp_type susp = (partial_susp_type) a_susp; int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long phase_reg; register long ph_incr_reg; register sample_type env_scale_reg = susp->env->scale; register sample_block_values_type env_ptr_reg; falloc_sample_block(out, "partial_s_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the env input sample block: */ susp_check_term_log_samples(env, env_ptr, env_cnt); togo = min(togo, susp->env_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < 0) to_stop = 0; /* avoids rounding errors */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = (int) to_stop; } } n = togo; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; env_ptr_reg = susp->env_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = sine_table[phase_reg >> SINE_TABLE_SHIFT] * (sample_type) (env_scale_reg * *env_ptr_reg++); phase_reg += ph_incr_reg; phase_reg &= SINE_TABLE_MASK;; } while (--n); /* inner loop */ susp->phase = (susp->phase + susp->ph_incr * togo) & SINE_TABLE_MASK; /* using env_ptr_reg is a bad idea on RS/6000: */ susp->env_ptr += togo; out_ptr += togo; susp_took(env_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* partial_s_fetch */ void partial_i_fetch(snd_susp_type a_susp, snd_list_type snd_list) { partial_susp_type susp = (partial_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type env_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long phase_reg; register long ph_incr_reg; register double env_pHaSe_iNcR_rEg = susp->env_pHaSe_iNcR; register double env_pHaSe_ReG; register sample_type env_x1_sample_reg; falloc_sample_block(out, "partial_i_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_log_samples(env, env_ptr, env_cnt); susp->env_x1_sample = susp_fetch_sample(env, env_ptr, env_cnt); } susp_check_term_log_samples(env, env_ptr, env_cnt); env_x2_sample = susp_current_sample(env, env_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < 0) to_stop = 0; /* avoids rounding errors */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = (int) to_stop; } } n = togo; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; env_pHaSe_ReG = susp->env_pHaSe; env_x1_sample_reg = susp->env_x1_sample; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (env_pHaSe_ReG >= 1.0) { env_x1_sample_reg = env_x2_sample; /* pick up next sample as env_x2_sample: */ susp->env_ptr++; susp_took(env_cnt, 1); env_pHaSe_ReG -= 1.0; susp_check_term_log_samples_break(env, env_ptr, env_cnt, env_x2_sample); } *out_ptr_reg++ = sine_table[phase_reg >> SINE_TABLE_SHIFT] * (sample_type) (env_x1_sample_reg * (1 - env_pHaSe_ReG) + env_x2_sample * env_pHaSe_ReG); phase_reg += ph_incr_reg; phase_reg &= SINE_TABLE_MASK;; env_pHaSe_ReG += env_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->phase = (susp->phase + susp->ph_incr * togo) & SINE_TABLE_MASK; susp->env_pHaSe = env_pHaSe_ReG; susp->env_x1_sample = env_x1_sample_reg; out_ptr += togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* partial_i_fetch */ void partial_r_fetch(snd_susp_type a_susp, snd_list_type snd_list) { partial_susp_type susp = (partial_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type env_DeLtA; sample_type env_val; sample_type env_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register long phase_reg; register long ph_incr_reg; falloc_sample_block(out, "partial_r_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->env_pHaSe = 1.0; } susp_check_term_log_samples(env, env_ptr, env_cnt); env_x2_sample = susp_current_sample(env, env_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* grab next env_x2_sample when phase goes past 1.0; */ /* we use env_n (computed below) to avoid roundoff errors: */ if (susp->env_n <= 0) { susp->env_x1_sample = env_x2_sample; susp->env_ptr++; susp_took(env_cnt, 1); susp->env_pHaSe -= 1.0; susp_check_term_log_samples(env, env_ptr, env_cnt); env_x2_sample = susp_current_sample(env, env_ptr); /* env_n gets number of samples before phase exceeds 1.0: */ susp->env_n = (int64_t) ((1.0 - susp->env_pHaSe) * susp->output_per_env); } togo = (int) min(togo, susp->env_n); env_DeLtA = (sample_type) ((env_x2_sample - susp->env_x1_sample) * susp->env_pHaSe_iNcR); env_val = (sample_type) (susp->env_x1_sample * (1.0 - susp->env_pHaSe) + env_x2_sample * susp->env_pHaSe); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } /* don't run past logical stop time */ if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) { int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt); /* break if to_stop == 0 (we're at the logical stop) * AND cnt > 0 (we're not at the beginning of the * output block). */ if (to_stop < 0) to_stop = 0; /* avoids rounding errors */ if (to_stop < togo) { if (to_stop == 0) { if (cnt) { togo = 0; break; } else /* keep togo as is: since cnt == 0, we * can set the logical stop flag on this * output block */ susp->logically_stopped = true; } else /* limit togo so we can start a new * block at the LST */ togo = (int) to_stop; } } n = togo; phase_reg = susp->phase; ph_incr_reg = susp->ph_incr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = sine_table[phase_reg >> SINE_TABLE_SHIFT] * (sample_type) env_val; phase_reg += ph_incr_reg; phase_reg &= SINE_TABLE_MASK;; env_val += env_DeLtA; } while (--n); /* inner loop */ susp->phase = (susp->phase + susp->ph_incr * togo) & SINE_TABLE_MASK; out_ptr += togo; susp->env_pHaSe += togo * susp->env_pHaSe_iNcR; susp->env_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } /* test for logical stop */ if (susp->logically_stopped) { snd_list->logically_stopped = true; } else if (susp->susp.log_stop_cnt == susp->susp.current) { susp->logically_stopped = true; } } /* partial_r_fetch */ void partial_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list) { partial_susp_type susp = (partial_susp_type) a_susp; time_type final_time = susp->susp.t0; int n; /* fetch samples from env up to final_time for this block of zeros */ while ((ROUNDBIG((final_time - susp->env->t0) * susp->env->sr)) >= susp->env->current) susp_get_samples(env, env_ptr, env_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = (int) ROUNDBIG((final_time - susp->env->t0) * susp->env->sr - (susp->env->current - susp->env_cnt)); susp->env_ptr += n; susp_took(env_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(a_susp, snd_list); } void partial_mark(snd_susp_type a_susp) { partial_susp_type susp = (partial_susp_type) a_susp; sound_xlmark(susp->env); } void partial_free(snd_susp_type a_susp) { partial_susp_type susp = (partial_susp_type) a_susp; sound_unref(susp->env); ffree_generic(susp, sizeof(partial_susp_node), "partial_free"); } void partial_print_tree(snd_susp_type a_susp, int n) { partial_susp_type susp = (partial_susp_type) a_susp; indent(n); stdputstr("env:"); sound_print_tree_1(susp->env, n); } sound_type snd_make_partial(rate_type sr, double hz, sound_type env) { register partial_susp_type susp; /* sr specified as input parameter */ time_type t0 = env->t0; int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; falloc_generic(susp, partial_susp_node, "snd_make_partial"); susp->phase = 0; susp->ph_incr = ROUND32((hz * SINE_TABLE_LEN) * (1 << SINE_TABLE_SHIFT) / sr); /* make sure no sample rate is too high */ if (env->sr > sr) { sound_unref(env); snd_badsr(); } /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(env, sr); switch (interp_desc) { case INTERP_n: susp->susp.fetch = partial_n_fetch; break; case INTERP_s: susp->susp.fetch = partial_s_fetch; break; case INTERP_i: susp->susp.fetch = partial_i_fetch; break; case INTERP_r: susp->susp.fetch = partial_r_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < env->t0) sound_prepend_zeros(env, t0); /* minimum start time over all inputs: */ t0_min = min(env->t0, t0); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = partial_toss_fetch; } /* initialize susp state */ susp->susp.free = partial_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = partial_mark; susp->susp.print_tree = partial_print_tree; susp->susp.name = "partial"; susp->logically_stopped = false; susp->susp.log_stop_cnt = logical_stop_cnt_cvt(env); susp->started = false; susp->susp.current = 0; susp->env = env; susp->env_cnt = 0; susp->env_pHaSe = 0.0; susp->env_pHaSe_iNcR = env->sr / sr; susp->env_n = 0; susp->output_per_env = sr / env->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_partial(rate_type sr, double hz, sound_type env) { sound_type env_copy = sound_copy(env); return snd_make_partial(sr, hz, env_copy); }