#include "stdio.h" #ifndef mips #include "stdlib.h" #endif #include "xlisp.h" #include "sound.h" #include "falloc.h" #include "cext.h" #include "delaycv.h" void delaycv_free(snd_susp_type a_susp); typedef struct delaycv_susp_struct { snd_susp_node susp; boolean started; int64_t terminate_cnt; sound_type input; int input_cnt; sample_block_values_type input_ptr; /* support for interpolation of input */ sample_type input_x1_sample; double input_pHaSe; double input_pHaSe_iNcR; /* support for ramp between samples of input */ double output_per_input; int64_t input_n; sound_type feedback; int feedback_cnt; sample_block_values_type feedback_ptr; /* support for interpolation of feedback */ sample_type feedback_x1_sample; double feedback_pHaSe; double feedback_pHaSe_iNcR; /* support for ramp between samples of feedback */ double output_per_feedback; int64_t feedback_n; long delaylen; sample_type *delaybuf; sample_type *delayptr; sample_type *endptr; } delaycv_susp_node, *delaycv_susp_type; void delaycv_nn_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_block_values_type feedback_ptr_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "delaycv_nn_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) *feedback_ptr_reg++ + (sample_type) *input_ptr_reg++; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_nn_fetch */ void delaycv_ns_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_type feedback_scale_reg = susp->feedback->scale; register sample_block_values_type feedback_ptr_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "delaycv_ns_fetch"); out_ptr = out->samples; snd_list->block = out; while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) (feedback_scale_reg * *feedback_ptr_reg++) + (sample_type) *input_ptr_reg++; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_ns_fetch */ void delaycv_ni_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type feedback_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register double feedback_pHaSe_iNcR_rEg = susp->feedback_pHaSe_iNcR; register double feedback_pHaSe_ReG; register sample_type feedback_x1_sample_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "delaycv_ni_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_samples(feedback, feedback_ptr, feedback_cnt); susp->feedback_x1_sample = susp_fetch_sample(feedback, feedback_ptr, feedback_cnt); } susp_check_samples(feedback, feedback_ptr, feedback_cnt); feedback_x2_sample = susp_current_sample(feedback, feedback_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_pHaSe_ReG = susp->feedback_pHaSe; feedback_x1_sample_reg = susp->feedback_x1_sample; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (feedback_pHaSe_ReG >= 1.0) { feedback_x1_sample_reg = feedback_x2_sample; /* pick up next sample as feedback_x2_sample: */ susp->feedback_ptr++; susp_took(feedback_cnt, 1); feedback_pHaSe_ReG -= 1.0; susp_check_samples_break(feedback, feedback_ptr, feedback_cnt, feedback_x2_sample); } *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) (feedback_x1_sample_reg * (1 - feedback_pHaSe_ReG) + feedback_x2_sample * feedback_pHaSe_ReG) + (sample_type) *input_ptr_reg++; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; feedback_pHaSe_ReG += feedback_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; susp->feedback_pHaSe = feedback_pHaSe_ReG; susp->feedback_x1_sample = feedback_x1_sample_reg; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_ni_fetch */ void delaycv_nr_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type feedback_DeLtA; sample_type feedback_val; sample_type feedback_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_block_values_type input_ptr_reg; falloc_sample_block(out, "delaycv_nr_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->feedback_pHaSe = 1.0; } susp_check_samples(feedback, feedback_ptr, feedback_cnt); feedback_x2_sample = susp_current_sample(feedback, feedback_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the input input sample block: */ susp_check_term_samples(input, input_ptr, input_cnt); togo = min(togo, susp->input_cnt); /* grab next feedback_x2_sample when phase goes past 1.0; */ /* we use feedback_n (computed below) to avoid roundoff errors: */ if (susp->feedback_n <= 0) { susp->feedback_x1_sample = feedback_x2_sample; susp->feedback_ptr++; susp_took(feedback_cnt, 1); susp->feedback_pHaSe -= 1.0; susp_check_samples(feedback, feedback_ptr, feedback_cnt); feedback_x2_sample = susp_current_sample(feedback, feedback_ptr); /* feedback_n gets number of samples before phase exceeds 1.0: */ susp->feedback_n = (int64_t) ((1.0 - susp->feedback_pHaSe) * susp->output_per_feedback); } togo = (int) min(togo, susp->feedback_n); feedback_DeLtA = (sample_type) ((feedback_x2_sample - susp->feedback_x1_sample) * susp->feedback_pHaSe_iNcR); feedback_val = (sample_type) (susp->feedback_x1_sample * (1.0 - susp->feedback_pHaSe) + feedback_x2_sample * susp->feedback_pHaSe); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; input_ptr_reg = susp->input_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) feedback_val + (sample_type) *input_ptr_reg++; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; feedback_val += feedback_DeLtA; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using input_ptr_reg is a bad idea on RS/6000: */ susp->input_ptr += togo; out_ptr += togo; susp_took(input_cnt, togo); susp->feedback_pHaSe += togo * susp->feedback_pHaSe_iNcR; susp->feedback_n -= togo; cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_nr_fetch */ void delaycv_in_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type input_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_block_values_type feedback_ptr_reg; register double input_pHaSe_iNcR_rEg = susp->input_pHaSe_iNcR; register double input_pHaSe_ReG; register sample_type input_x1_sample_reg; falloc_sample_block(out, "delaycv_in_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_samples(input, input_ptr, input_cnt); susp->input_x1_sample = susp_fetch_sample(input, input_ptr, input_cnt); } susp_check_term_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; input_pHaSe_ReG = susp->input_pHaSe; input_x1_sample_reg = susp->input_x1_sample; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (input_pHaSe_ReG >= 1.0) { input_x1_sample_reg = input_x2_sample; /* pick up next sample as input_x2_sample: */ susp->input_ptr++; susp_took(input_cnt, 1); input_pHaSe_ReG -= 1.0; susp_check_term_samples_break(input, input_ptr, input_cnt, input_x2_sample); } *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) *feedback_ptr_reg++ + (sample_type) (input_x1_sample_reg * (1 - input_pHaSe_ReG) + input_x2_sample * input_pHaSe_ReG); if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; input_pHaSe_ReG += input_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; susp->input_pHaSe = input_pHaSe_ReG; susp->input_x1_sample = input_x1_sample_reg; out_ptr += togo; susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_in_fetch */ void delaycv_is_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type input_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_type feedback_scale_reg = susp->feedback->scale; register sample_block_values_type feedback_ptr_reg; register double input_pHaSe_iNcR_rEg = susp->input_pHaSe_iNcR; register double input_pHaSe_ReG; register sample_type input_x1_sample_reg; falloc_sample_block(out, "delaycv_is_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp_check_term_samples(input, input_ptr, input_cnt); susp->input_x1_sample = susp_fetch_sample(input, input_ptr, input_cnt); } susp_check_term_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; input_pHaSe_ReG = susp->input_pHaSe; input_x1_sample_reg = susp->input_x1_sample; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ if (input_pHaSe_ReG >= 1.0) { input_x1_sample_reg = input_x2_sample; /* pick up next sample as input_x2_sample: */ susp->input_ptr++; susp_took(input_cnt, 1); input_pHaSe_ReG -= 1.0; susp_check_term_samples_break(input, input_ptr, input_cnt, input_x2_sample); } *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) (feedback_scale_reg * *feedback_ptr_reg++) + (sample_type) (input_x1_sample_reg * (1 - input_pHaSe_ReG) + input_x2_sample * input_pHaSe_ReG); if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; input_pHaSe_ReG += input_pHaSe_iNcR_rEg; } while (--n); /* inner loop */ togo -= n; susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; susp->input_pHaSe = input_pHaSe_ReG; susp->input_x1_sample = input_x1_sample_reg; out_ptr += togo; susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_is_fetch */ void delaycv_rn_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type input_DeLtA; sample_type input_val; sample_type input_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_block_values_type feedback_ptr_reg; falloc_sample_block(out, "delaycv_rn_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->input_pHaSe = 1.0; } susp_check_term_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* grab next input_x2_sample when phase goes past 1.0; */ /* we use input_n (computed below) to avoid roundoff errors: */ if (susp->input_n <= 0) { susp->input_x1_sample = input_x2_sample; susp->input_ptr++; susp_took(input_cnt, 1); susp->input_pHaSe -= 1.0; susp_check_term_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); /* input_n gets number of samples before phase exceeds 1.0: */ susp->input_n = (int64_t) ((1.0 - susp->input_pHaSe) * susp->output_per_input); } togo = (int) min(togo, susp->input_n); input_DeLtA = (sample_type) ((input_x2_sample - susp->input_x1_sample) * susp->input_pHaSe_iNcR); input_val = (sample_type) (susp->input_x1_sample * (1.0 - susp->input_pHaSe) + input_x2_sample * susp->input_pHaSe); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) *feedback_ptr_reg++ + (sample_type) input_val; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; input_val += input_DeLtA; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; out_ptr += togo; susp->input_pHaSe += togo * susp->input_pHaSe_iNcR; susp->input_n -= togo; susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_rn_fetch */ void delaycv_rs_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; int cnt = 0; /* how many samples computed */ sample_type input_DeLtA; sample_type input_val; sample_type input_x2_sample; int togo; int n; sample_block_type out; register sample_block_values_type out_ptr; register sample_block_values_type out_ptr_reg; register sample_type * delayptr_reg; register sample_type * endptr_reg; register sample_type feedback_scale_reg = susp->feedback->scale; register sample_block_values_type feedback_ptr_reg; falloc_sample_block(out, "delaycv_rs_fetch"); out_ptr = out->samples; snd_list->block = out; /* make sure sounds are primed with first values */ if (!susp->started) { susp->started = true; susp->input_pHaSe = 1.0; } susp_check_term_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); while (cnt < max_sample_block_len) { /* outer loop */ /* first compute how many samples to generate in inner loop: */ /* don't overflow the output sample block: */ togo = max_sample_block_len - cnt; /* grab next input_x2_sample when phase goes past 1.0; */ /* we use input_n (computed below) to avoid roundoff errors: */ if (susp->input_n <= 0) { susp->input_x1_sample = input_x2_sample; susp->input_ptr++; susp_took(input_cnt, 1); susp->input_pHaSe -= 1.0; susp_check_term_samples(input, input_ptr, input_cnt); input_x2_sample = susp_current_sample(input, input_ptr); /* input_n gets number of samples before phase exceeds 1.0: */ susp->input_n = (int64_t) ((1.0 - susp->input_pHaSe) * susp->output_per_input); } togo = (int) min(togo, susp->input_n); input_DeLtA = (sample_type) ((input_x2_sample - susp->input_x1_sample) * susp->input_pHaSe_iNcR); input_val = (sample_type) (susp->input_x1_sample * (1.0 - susp->input_pHaSe) + input_x2_sample * susp->input_pHaSe); /* don't run past the feedback input sample block: */ susp_check_samples(feedback, feedback_ptr, feedback_cnt); togo = min(togo, susp->feedback_cnt); /* don't run past terminate time */ if (susp->terminate_cnt != UNKNOWN && susp->terminate_cnt <= susp->susp.current + cnt + togo) { togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt)); if (togo < 0) togo = 0; /* avoids rounding errros */ if (togo == 0) break; } n = togo; delayptr_reg = susp->delayptr; endptr_reg = susp->endptr; feedback_ptr_reg = susp->feedback_ptr; out_ptr_reg = out_ptr; if (n) do { /* the inner sample computation loop */ *out_ptr_reg++ = *delayptr_reg; *delayptr_reg = *delayptr_reg * (sample_type) (feedback_scale_reg * *feedback_ptr_reg++) + (sample_type) input_val; if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf; input_val += input_DeLtA; } while (--n); /* inner loop */ susp->delayptr = delayptr_reg; susp->endptr = endptr_reg; /* using feedback_ptr_reg is a bad idea on RS/6000: */ susp->feedback_ptr += togo; out_ptr += togo; susp->input_pHaSe += togo * susp->input_pHaSe_iNcR; susp->input_n -= togo; susp_took(feedback_cnt, togo); cnt += togo; } /* outer loop */ /* test for termination */ if (togo == 0 && cnt == 0) { snd_list_terminate(snd_list); } else { snd_list->block_len = cnt; susp->susp.current += cnt; } } /* delaycv_rs_fetch */ void delaycv_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; time_type final_time = susp->susp.t0; int n; /* fetch samples from input up to final_time for this block of zeros */ while ((ROUNDBIG((final_time - susp->input->t0) * susp->input->sr)) >= susp->input->current) susp_get_samples(input, input_ptr, input_cnt); /* fetch samples from feedback up to final_time for this block of zeros */ while ((ROUNDBIG((final_time - susp->feedback->t0) * susp->feedback->sr)) >= susp->feedback->current) susp_get_samples(feedback, feedback_ptr, feedback_cnt); /* convert to normal processing when we hit final_count */ /* we want each signal positioned at final_time */ n = (int) ROUNDBIG((final_time - susp->input->t0) * susp->input->sr - (susp->input->current - susp->input_cnt)); susp->input_ptr += n; susp_took(input_cnt, n); n = (int) ROUNDBIG((final_time - susp->feedback->t0) * susp->feedback->sr - (susp->feedback->current - susp->feedback_cnt)); susp->feedback_ptr += n; susp_took(feedback_cnt, n); susp->susp.fetch = susp->susp.keep_fetch; (*(susp->susp.fetch))(a_susp, snd_list); } void delaycv_mark(snd_susp_type a_susp) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; sound_xlmark(susp->input); sound_xlmark(susp->feedback); } void delaycv_free(snd_susp_type a_susp) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; free(susp->delaybuf); sound_unref(susp->input); sound_unref(susp->feedback); ffree_generic(susp, sizeof(delaycv_susp_node), "delaycv_free"); } void delaycv_print_tree(snd_susp_type a_susp, int n) { delaycv_susp_type susp = (delaycv_susp_type) a_susp; indent(n); stdputstr("input:"); sound_print_tree_1(susp->input, n); indent(n); stdputstr("feedback:"); sound_print_tree_1(susp->feedback, n); } sound_type snd_make_delaycv(sound_type input, time_type delay, sound_type feedback) { register delaycv_susp_type susp; rate_type sr = max(input->sr, feedback->sr); time_type t0 = max(input->t0, feedback->t0); int interp_desc = 0; sample_type scale_factor = 1.0F; time_type t0_min = t0; /* combine scale factors of linear inputs (INPUT) */ scale_factor *= input->scale; input->scale = 1.0F; /* try to push scale_factor back to a low sr input */ if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; } falloc_generic(susp, delaycv_susp_node, "snd_make_delaycv"); susp->delaylen = ROUND32(input->sr * delay); susp->delaybuf = (sample_type *) calloc (sizeof(double), susp->delaylen); susp->delayptr = susp->delaybuf; susp->endptr = susp->delaybuf + susp->delaylen; /* select a susp fn based on sample rates */ interp_desc = (interp_desc << 2) + interp_style(input, sr); interp_desc = (interp_desc << 2) + interp_style(feedback, sr); switch (interp_desc) { case INTERP_nn: susp->susp.fetch = delaycv_nn_fetch; break; case INTERP_ns: susp->susp.fetch = delaycv_ns_fetch; break; case INTERP_ni: susp->susp.fetch = delaycv_ni_fetch; break; case INTERP_nr: susp->susp.fetch = delaycv_nr_fetch; break; case INTERP_in: susp->susp.fetch = delaycv_in_fetch; break; case INTERP_is: susp->susp.fetch = delaycv_is_fetch; break; case INTERP_rn: susp->susp.fetch = delaycv_rn_fetch; break; case INTERP_rs: susp->susp.fetch = delaycv_rs_fetch; break; default: snd_badsr(); break; } susp->terminate_cnt = UNKNOWN; /* handle unequal start times, if any */ if (t0 < input->t0) sound_prepend_zeros(input, t0); if (t0 < feedback->t0) sound_prepend_zeros(feedback, t0); /* minimum start time over all inputs: */ t0_min = min(input->t0, min(feedback->t0, t0)); /* how many samples to toss before t0: */ susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5); if (susp->susp.toss_cnt > 0) { susp->susp.keep_fetch = susp->susp.fetch; susp->susp.fetch = delaycv_toss_fetch; } /* initialize susp state */ susp->susp.free = delaycv_free; susp->susp.sr = sr; susp->susp.t0 = t0; susp->susp.mark = delaycv_mark; susp->susp.print_tree = delaycv_print_tree; susp->susp.name = "delaycv"; susp->susp.log_stop_cnt = UNKNOWN; susp->started = false; susp->susp.current = 0; susp->input = input; susp->input_cnt = 0; susp->input_pHaSe = 0.0; susp->input_pHaSe_iNcR = input->sr / sr; susp->input_n = 0; susp->output_per_input = sr / input->sr; susp->feedback = feedback; susp->feedback_cnt = 0; susp->feedback_pHaSe = 0.0; susp->feedback_pHaSe_iNcR = feedback->sr / sr; susp->feedback_n = 0; susp->output_per_feedback = sr / feedback->sr; return sound_create((snd_susp_type)susp, t0, sr, scale_factor); } sound_type snd_delaycv(sound_type input, time_type delay, sound_type feedback) { sound_type input_copy = sound_copy(input); sound_type feedback_copy = sound_copy(feedback); return snd_make_delaycv(input_copy, delay, feedback_copy); }