1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-10-24 23:33:50 +02:00

pixel column counts and sample window sizes use unsigned types

This commit is contained in:
Paul Licameli
2016-09-08 14:28:34 -04:00
parent b910bf63da
commit ed21545c80
36 changed files with 1031 additions and 1010 deletions

View File

@@ -54,11 +54,9 @@
* Initialize the Sine table and Twiddle pointers (bit-reversed pointers)
* for the FFT routine.
*/
HFFT InitializeFFT(int fftlen)
HFFT InitializeFFT(size_t fftlen)
{
int i;
int temp;
int mask;
HFFT h;
if((h=(HFFT)malloc(sizeof(FFTParam)))==NULL)
@@ -71,7 +69,7 @@ HFFT InitializeFFT(int fftlen)
* The full FFT output can be reconstructed from this FFT's output.
* (This optimization can be made since the data is real.)
*/
h->Points = fftlen/2;
h->Points = fftlen / 2;
if((h->SinTable=(fft_type *)malloc(2*h->Points*sizeof(fft_type)))==NULL)
{
@@ -85,16 +83,16 @@ HFFT InitializeFFT(int fftlen)
exit(8);
}
for(i=0;i<h->Points;i++)
for(size_t i = 0; i < h->Points; i++)
{
temp=0;
for(mask=h->Points/2;mask>0;mask >>= 1)
temp=(temp >> 1) + (i&mask ? h->Points : 0);
temp = 0;
for(size_t mask = h->Points / 2; mask > 0; mask >>= 1)
temp = (temp >> 1) + (i & mask ? h->Points : 0);
h->BitReversed[i]=temp;
h->BitReversed[i] = temp;
}
for(i=0;i<h->Points;i++)
for(size_t i = 0; i < h->Points; i++)
{
h->SinTable[h->BitReversed[i] ]=(fft_type)-sin(2*M_PI*i/(2*h->Points));
h->SinTable[h->BitReversed[i]+1]=(fft_type)-cos(2*M_PI*i/(2*h->Points));
@@ -102,9 +100,9 @@ HFFT InitializeFFT(int fftlen)
#ifdef EXPERIMENTAL_EQ_SSE_THREADED
// NEW SSE FFT routines work on live data
for(i=0;i<32;i++)
if((1<<i)&fftlen)
h->pow2Bits=i;
for(size_t i = 0; i < 32; i++)
if((1 << i) & fftlen)
h->pow2Bits = i;
#endif
return h;
@@ -115,25 +113,29 @@ HFFT InitializeFFT(int fftlen)
*/
void EndFFT(HFFT h)
{
if(h->Points>0) {
if(h->Points > 0) {
free(h->BitReversed);
free(h->SinTable);
}
h->Points=0;
h->Points = 0;
free(h);
}
#define MAX_HFFT 10
enum : size_t { MAX_HFFT = 10 };
static HFFT hFFTArray[MAX_HFFT] = { NULL };
static int nFFTLockCount[MAX_HFFT] = { 0 };
/* Get a handle to the FFT tables of the desired length */
/* This version keeps common tables rather than allocating a NEW table every time */
HFFT GetFFT(int fftlen)
HFFT GetFFT(size_t fftlen)
{
int h,n = fftlen/2;
for(h=0; (h<MAX_HFFT) && (hFFTArray[h] != NULL) && (n != hFFTArray[h]->Points); h++);
if(h<MAX_HFFT) {
size_t h = 0;
auto n = fftlen/2;
for(;
(h < MAX_HFFT) && (hFFTArray[h] != NULL) && (n != hFFTArray[h]->Points);
h++)
;
if(h < MAX_HFFT) {
if(hFFTArray[h] == NULL) {
hFFTArray[h] = InitializeFFT(fftlen);
nFFTLockCount[h] = 0;
@@ -142,7 +144,7 @@ HFFT GetFFT(int fftlen)
return hFFTArray[h];
} else {
// All buffers used, so fall back to allocating a NEW set of tables
return InitializeFFT(fftlen);;
return InitializeFFT(fftlen);
}
}
@@ -197,7 +199,7 @@ void RealFFTf(fft_type *buffer,HFFT h)
fft_type HRplus,HRminus,HIplus,HIminus;
fft_type v1,v2,sin,cos;
int ButterfliesPerGroup=h->Points/2;
auto ButterfliesPerGroup = h->Points/2;
/*
* Butterfly:
@@ -207,37 +209,37 @@ void RealFFTf(fft_type *buffer,HFFT h)
* Bin-----Bout
*/
endptr1=buffer+h->Points*2;
endptr1 = buffer + h->Points * 2;
while(ButterfliesPerGroup>0)
while(ButterfliesPerGroup > 0)
{
A=buffer;
B=buffer+ButterfliesPerGroup*2;
sptr=h->SinTable;
A = buffer;
B = buffer + ButterfliesPerGroup * 2;
sptr = h->SinTable;
while(A<endptr1)
while(A < endptr1)
{
sin=*sptr;
cos=*(sptr+1);
endptr2=B;
while(A<endptr2)
sin = *sptr;
cos = *(sptr+1);
endptr2 = B;
while(A < endptr2)
{
v1=*B*cos + *(B+1)*sin;
v2=*B*sin - *(B+1)*cos;
*B=(*A+v1);
*(A++)=*(B++)-2*v1;
*B=(*A-v2);
*(A++)=*(B++)+2*v2;
v1 = *B * cos + *(B + 1) * sin;
v2 = *B * sin - *(B + 1) * cos;
*B = (*A + v1);
*(A++) = *(B++) - 2 * v1;
*B = (*A - v2);
*(A++) = *(B++) + 2 * v2;
}
A=B;
B+=ButterfliesPerGroup*2;
sptr+=2;
A = B;
B += ButterfliesPerGroup * 2;
sptr += 2;
}
ButterfliesPerGroup >>= 1;
}
/* Massage output to get the output for a real input sequence. */
br1=h->BitReversed+1;
br2=h->BitReversed+h->Points-1;
br1 = h->BitReversed + 1;
br2 = h->BitReversed + h->Points - 1;
while(br1<br2)
{
@@ -299,12 +301,12 @@ void InverseRealFFTf(fft_type *buffer,HFFT h)
fft_type HRplus,HRminus,HIplus,HIminus;
fft_type v1,v2,sin,cos;
int ButterfliesPerGroup=h->Points/2;
auto ButterfliesPerGroup = h->Points / 2;
/* Massage input to get the input for a real output sequence. */
A=buffer+2;
B=buffer+h->Points*2-2;
br1=h->BitReversed+1;
A = buffer + 2;
B = buffer + h->Points * 2 - 2;
br1 = h->BitReversed + 1;
while(A<B)
{
sin=h->SinTable[*br1];
@@ -344,30 +346,30 @@ void InverseRealFFTf(fft_type *buffer,HFFT h)
* Bin-----Bout
*/
endptr1=buffer+h->Points*2;
endptr1 = buffer + h->Points * 2;
while(ButterfliesPerGroup>0)
while(ButterfliesPerGroup > 0)
{
A=buffer;
B=buffer+ButterfliesPerGroup*2;
sptr=h->SinTable;
A = buffer;
B = buffer + ButterfliesPerGroup * 2;
sptr = h->SinTable;
while(A<endptr1)
while(A < endptr1)
{
sin=*(sptr++);
cos=*(sptr++);
endptr2=B;
while(A<endptr2)
sin = *(sptr++);
cos = *(sptr++);
endptr2 = B;
while(A < endptr2)
{
v1=*B*cos - *(B+1)*sin;
v2=*B*sin + *(B+1)*cos;
*B=(*A+v1)*(fft_type)0.5;
*(A++)=*(B++)-v1;
*B=(*A+v2)*(fft_type)0.5;
*(A++)=*(B++)-v2;
v1 = *B * cos - *(B + 1) * sin;
v2 = *B * sin + *(B + 1) * cos;
*B = (*A + v1) * (fft_type)0.5;
*(A++) = *(B++) - v1;
*B = (*A + v2) * (fft_type)0.5;
*(A++) = *(B++) - v2;
}
A=B;
B+=ButterfliesPerGroup*2;
A = B;
B += ButterfliesPerGroup * 2;
}
ButterfliesPerGroup >>= 1;
}
@@ -377,9 +379,9 @@ void ReorderToFreq(HFFT hFFT, const fft_type *buffer,
fft_type *RealOut, fft_type *ImagOut)
{
// Copy the data into the real and imaginary outputs
for(int i=1;i<hFFT->Points;i++) {
RealOut[i]=buffer[hFFT->BitReversed[i] ];
ImagOut[i]=buffer[hFFT->BitReversed[i]+1];
for(size_t i = 1; i < hFFT->Points; i++) {
RealOut[i] = buffer[hFFT->BitReversed[i] ];
ImagOut[i] = buffer[hFFT->BitReversed[i]+1];
}
RealOut[0] = buffer[0]; // DC component
ImagOut[0] = 0;
@@ -390,7 +392,7 @@ void ReorderToFreq(HFFT hFFT, const fft_type *buffer,
void ReorderToTime(HFFT hFFT, const fft_type *buffer, fft_type *TimeOut)
{
// Copy the data into the real outputs
for(int i=0;i<hFFT->Points;i++) {
for(size_t i = 0; i < hFFT->Points; i++) {
TimeOut[i*2 ]=buffer[hFFT->BitReversed[i] ];
TimeOut[i*2+1]=buffer[hFFT->BitReversed[i]+1];
}