1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-05-06 23:02:42 +02:00

Add new-style track_cast, iterators, and TypeSwitch for Track

This commit is contained in:
Paul Licameli 2018-09-30 10:43:37 -04:00
commit d19695022a
9 changed files with 1020 additions and 41 deletions

View File

@ -153,8 +153,6 @@ class AUDACITY_DLL_API LabelTrack final : public Track
int getSelectedIndex() const { return mSelIndex; }
int GetKind() const override { return Label; }
double GetOffset() const override;
double GetStartTime() const override;
double GetEndTime() const override;
@ -274,6 +272,8 @@ class AUDACITY_DLL_API LabelTrack final : public Track
public:
void SortLabels(LabelTrackHit *pHit = nullptr);
private:
TrackKind GetKind() const override { return TrackKind::Label; }
void ShowContextMenu();
void OnContextMenu(wxCommandEvent & evt);

View File

@ -78,8 +78,6 @@ class AUDACITY_DLL_API NoteTrack final
using Holder = std::unique_ptr<NoteTrack>;
Track::Holder Duplicate() const override;
int GetKind() const override { return Note; }
double GetOffset() const override;
double GetStartTime() const override;
double GetEndTime() const override;
@ -237,7 +235,10 @@ class AUDACITY_DLL_API NoteTrack final
mVisibleChannels = CHANNEL_BIT(c);
}
TrackKind GetKind() const override { return TrackKind::Note; }
private:
void AddToDuration( double delta );
// These are mutable to allow NoteTrack to switch details of representation

View File

@ -57,9 +57,6 @@ class TimeTrack final : public Track {
const AudacityProject *pProject, int currentTool, bool bMultiTool)
override;
// Identifying the type of track
int GetKind() const override { return Time; }
// TimeTrack parameters
double GetOffset() const override { return 0.0; }
@ -138,6 +135,9 @@ class TimeTrack final : public Track {
void testMe();
private:
// Identifying the type of track
TrackKind GetKind() const override { return TrackKind::Time; }
const ZoomInfo *const mZoomInfo;
std::unique_ptr<Envelope> mEnvelope;
std::unique_ptr<Ruler> mRuler;

View File

@ -292,6 +292,26 @@ Track *Track::GetLink() const
return nullptr;
}
namespace {
inline bool IsSyncLockableNonLabelTrack( const Track *pTrack )
{
return nullptr != track_cast< const AudioTrack * >( pTrack );
}
bool IsGoodNextSyncLockTrack(const Track *t, bool inLabelSection)
{
if (!t)
return false;
const bool isLabel = ( nullptr != track_cast<const LabelTrack*>(t) );
if (inLabelSection)
return isLabel;
else if (isLabel)
return true;
else
return IsSyncLockableNonLabelTrack( t );
}
}
bool Track::IsSyncLockSelected() const
{
#ifdef EXPERIMENTAL_SYNC_LOCK
@ -383,6 +403,21 @@ bool PlayableTrack::HandleXMLAttribute(const wxChar *attr, const wxChar *value)
return AudioTrack::HandleXMLAttribute(attr, value);
}
bool Track::Any() const
{ return true; }
bool Track::IsSelected() const
{ return GetSelected(); }
bool Track::IsSelectedOrSyncLockSelected() const
{ return GetSelected() || IsSyncLockSelected(); }
bool Track::IsLeader() const
{ return !GetLink() || GetLinked(); }
bool Track::IsSelectedLeader() const
{ return IsSelected() && IsLeader(); }
// TrackListIterator
TrackListIterator::TrackListIterator(TrackList * val, TrackNodePointer p)
: l{ val }
@ -601,7 +636,7 @@ Track *TrackListCondIterator::Last(bool skiplinked)
}
// TrackListOfKindIterator
TrackListOfKindIterator::TrackListOfKindIterator(int kind, TrackList * val)
TrackListOfKindIterator::TrackListOfKindIterator(TrackKind kind, TrackList * val)
: TrackListCondIterator(val)
{
this->kind = kind;
@ -652,13 +687,6 @@ SyncLockedTracksIterator::SyncLockedTracksIterator(TrackList * val)
{
}
namespace {
inline bool IsSyncLockableNonLabelTrack( const Track *pTrack )
{
return nullptr != dynamic_cast< const AudioTrack * >( pTrack );
}
}
Track *SyncLockedTracksIterator::StartWith(Track * member)
{
Track *t = NULL;
@ -769,6 +797,46 @@ Track *SyncLockedTracksIterator::Last(bool skiplinked)
return t;
}
std::pair<Track *, Track *> TrackList::FindSyncLockGroup(Track *pMember) const
{
if (!pMember)
return { nullptr, nullptr };
// A non-trivial sync-locked group is a maximal sub-sequence of the tracks
// consisting of any positive number of audio tracks followed by zero or
// more label tracks.
// Step back through any label tracks.
auto member = pMember;
while (member && ( nullptr != track_cast<const LabelTrack*>(member) )) {
member = GetPrev(member);
}
// Step back through the wave and note tracks before the label tracks.
Track *first = nullptr;
while (member && IsSyncLockableNonLabelTrack(member)) {
first = member;
member = GetPrev(member);
}
if (!first)
// Can't meet the criteria described above. In that case,
// consider the track to be the sole member of a group.
return { pMember, pMember };
Track *last = first;
bool inLabels = false;
while (const auto next = GetNext(last)) {
if ( ! IsGoodNextSyncLockTrack(next, inLabels) )
break;
last = next;
inLabels = (nullptr != track_cast<const LabelTrack*>(last) );
}
return { first, last };
}
// TrackList
//
@ -877,6 +945,34 @@ void TrackList::ResizingEvent(TrackNodePointer node)
QueueEvent(e.release());
}
auto TrackList::EmptyRange() const
-> TrackIterRange< Track >
{
auto it = const_cast<TrackList*>(this)->getEnd();
return {
{ it, it, it, &Track::Any },
{ it, it, it, &Track::Any }
};
}
auto TrackList::SyncLockGroup( Track *pTrack )
-> TrackIterRange< Track >
{
auto pList = pTrack->GetOwner();
auto tracks =
pList->FindSyncLockGroup( const_cast<Track*>( pTrack ) );
return pList->Any().StartingWith(tracks.first).EndingAfter(tracks.second);
}
auto TrackList::FindLeader( Track *pTrack )
-> TrackIter< Track >
{
auto iter = Find(pTrack);
while( *iter && ! ( *iter )->IsLeader() )
--iter;
return iter.Filter( &Track::IsLeader );
}
void TrackList::Permute(const std::vector<TrackNodePointer> &permutation)
{
for (const auto iter : permutation) {

View File

@ -34,6 +34,8 @@
class wxTextFile;
class DirManager;
class Track;
class AudioTrack;
class PlayableTrack;
class LabelTrack;
class TimeTrack;
class TrackControls;
@ -70,6 +72,92 @@ inline bool operator == (const TrackNodePointer &a, const TrackNodePointer &b)
inline bool operator != (const TrackNodePointer &a, const TrackNodePointer &b)
{ return !(a == b); }
enum class TrackKind
{
None,
Wave,
#if defined(USE_MIDI)
Note,
#endif
Label,
Time,
Audio,
Playable,
All
};
// Compile-time function on enum values.
// It knows all inheritance relations among Track subclasses
// even where the track types are only forward declared.
constexpr bool CompatibleTrackKinds( TrackKind desired, TrackKind actual )
{
return
(desired == actual)
||
(desired == TrackKind::All)
||
(desired == TrackKind::Audio && actual == TrackKind::Wave)
#ifdef USE_MIDI
||
(desired == TrackKind::Audio && actual == TrackKind::Note)
#endif
||
(desired == TrackKind::Playable && actual == TrackKind::Wave)
#ifdef EXPERIMENTAL_MIDI_OUT
||
(desired == TrackKind::Playable && actual == TrackKind::Note)
#endif
;
}
// This bit of metaprogramming lets track_cast work even when the track
// subclasses are visible only as incomplete types
namespace TrackTyper {
template<typename, TrackKind> struct Pair;
using List = std::tuple<
Pair<Track, TrackKind::All>,
Pair<AudioTrack, TrackKind::Audio>,
Pair<PlayableTrack, TrackKind::Playable>,
Pair<LabelTrack, TrackKind::Label>,
Pair<NoteTrack, TrackKind::Note>,
Pair<TimeTrack, TrackKind::Time>,
Pair<WaveTrack, TrackKind::Wave>
// New classes can be added easily to this list
>;
template<typename...> struct Lookup;
template<typename TrackType, TrackKind Here, typename... Rest>
struct Lookup< TrackType, std::tuple< Pair<TrackType, Here>, Rest... > > {
static constexpr TrackKind value() {
return Here;
}
};
template<typename TrackType, typename NotHere, typename... Rest>
struct Lookup< TrackType, std::tuple< NotHere, Rest... > > {
static constexpr TrackKind value() {
return Lookup< TrackType, std::tuple< Rest... > >::value();
}
};
};
template<typename TrackType> constexpr TrackKind track_kind ()
{
using namespace TrackTyper;
return Lookup< typename std::remove_const<TrackType>::type, List >::value();
}
// forward declarations, so we can make them friends
template<typename T>
typename std::enable_if< std::is_pointer<T>::value, T >::type
track_cast(Track *track);
template<typename T>
typename std::enable_if<
std::is_pointer<T>::value &&
std::is_const< typename std::remove_pointer< T >::type >::value,
T
>::type
track_cast(const Track *track);
class ViewInfo;
// This is an in-session identifier of track objects across undo states
@ -233,7 +321,9 @@ public:
Track *GetLink() const;
private:
private:
std::shared_ptr<TrackList> GetOwner() const { return mList.lock(); }
TrackNodePointer GetNode() const;
void SetOwner
(const std::weak_ptr<TrackList> &list, TrackNodePointer node);
@ -248,18 +338,6 @@ public:
public:
enum TrackKindEnum
{
None,
Wave,
#if defined(USE_MIDI)
Note,
#endif
Label,
Time,
All
};
enum : unsigned { DefaultHeight = 150 };
Track(const std::shared_ptr<DirManager> &projDirManager);
@ -335,7 +413,298 @@ public:
// May assume precondition: t0 <= t1
virtual void InsertSilence(double WXUNUSED(t), double WXUNUSED(len)) = 0;
virtual int GetKind() const { return None; }
// to do: privatize this
virtual TrackKind GetKind() const { return TrackKind::None; }
// to do: remove these
static const TrackKind Label = TrackKind::Label;
#ifdef USE_MIDI
static const TrackKind Note = TrackKind::Note;
#endif
static const TrackKind Wave = TrackKind::Wave;
static const TrackKind Time = TrackKind::Time;
static const TrackKind All = TrackKind::All;
static const TrackKind None = TrackKind::None;
private:
template<typename T>
friend typename std::enable_if< std::is_pointer<T>::value, T >::type
track_cast(Track *track);
template<typename T>
friend typename std::enable_if<
std::is_pointer<T>::value &&
std::is_const< typename std::remove_pointer< T >::type >::value,
T
>::type
track_cast(const Track *track);
friend class TrackListOfKindIterator;
public:
bool SameKindAs(const Track &track) const
{ return GetKind() == track.GetKind(); }
template < typename R = void >
using Continuation = std::function< R() >;
using Fallthrough = Continuation<>;
private:
// Variadic template specialized below
template< typename ...Params >
struct Executor;
// This specialization grounds the recursion.
template< typename R, typename ConcreteType >
struct Executor< R, ConcreteType >
{
enum : unsigned { SetUsed = 0 };
// No functions matched, so do nothing.
R operator () (const void *) { return R{}; }
};
// And another specialization is needed for void return.
template< typename ConcreteType >
struct Executor< void, ConcreteType >
{
enum : unsigned { SetUsed = 0 };
// No functions matched, so do nothing.
void operator () (const void *) { }
};
// This struct groups some helpers needed to define the recursive cases of
// Executor.
struct Dispatcher {
// This implements the specialization of Executor
// for the first recursive case.
template< typename R, typename ConcreteType,
typename Function, typename ...Functions >
struct inapplicable
{
using Tail = Executor< R, ConcreteType, Functions... >;
enum : unsigned { SetUsed = Tail::SetUsed << 1 };
// Ignore the first, inapplicable function and try others.
R operator ()
(const Track *pTrack,
const Function &, const Functions &...functions)
{ return Tail{}( pTrack, functions... ); }
};
// This implements the specialization of Executor
// for the second recursive case.
template< typename R, typename BaseClass, typename ConcreteType,
typename Function, typename ...Functions >
struct applicable1
{
enum : unsigned { SetUsed = 1u };
// Ignore the remaining functions and call the first only.
R operator ()
(const Track *pTrack,
const Function &function, const Functions &...)
{ return function( (BaseClass *)pTrack ); }
};
// This implements the specialization of Executor
// for the third recursive case.
template< typename R, typename BaseClass, typename ConcreteType,
typename Function, typename ...Functions >
struct applicable2
{
using Tail = Executor< R, ConcreteType, Functions... >;
enum : unsigned { SetUsed = (Tail::SetUsed << 1) | 1u };
// Call the first function, which may request dispatch to the further
// functions by invoking a continuation.
R operator ()
(const Track *pTrack, const Function &function,
const Functions &...functions)
{
auto continuation = Continuation<R>{ [&] {
return Tail{}( pTrack, functions... );
} };
return function( (BaseClass *)pTrack, continuation );
}
};
// This variadic template chooses among the implementations above.
template< typename ... > struct Switch;
// Ground the recursion.
template< typename R, typename ConcreteType >
struct Switch< R, ConcreteType >
{
// No BaseClass of ConcreteType is acceptable to Function.
template< typename Function, typename ...Functions >
static auto test()
-> inapplicable< R, ConcreteType, Function, Functions... >;
};
// Recursive case.
template< typename R, typename ConcreteType,
typename BaseClass, typename ...BaseClasses >
struct Switch< R, ConcreteType, BaseClass, BaseClasses... >
{
using Retry = Switch< R, ConcreteType, BaseClasses... >;
// If ConcreteType is not compatible with BaseClass, or if
// Function does not accept BaseClass, try other BaseClasses.
template< typename Function, typename ...Functions >
static auto test( const void * )
-> decltype( Retry::template test< Function, Functions... >() );
// If BaseClass is a base of ConcreteType and Function can take it,
// then overload resolution chooses this.
// If not, then the sfinae rule makes this overload unavailable.
template< typename Function, typename ...Functions >
static auto test( std::true_type * )
-> decltype(
(void) std::declval<Function>()
( (BaseClass*)nullptr ),
applicable1< R, BaseClass, ConcreteType,
Function, Functions... >{}
);
// If BaseClass is a base of ConcreteType and Function can take it,
// with a second argument for a continuation,
// then overload resolution chooses this.
// If not, then the sfinae rule makes this overload unavailable.
template< typename Function, typename ...Functions >
static auto test( std::true_type * )
-> decltype(
(void) std::declval<Function>()
( (BaseClass*)nullptr,
std::declval< Continuation<R> >() ),
applicable2< R, BaseClass, ConcreteType,
Function, Functions... >{}
);
static constexpr bool Compatible = CompatibleTrackKinds(
track_kind<BaseClass>(), track_kind<ConcreteType>() );
template< typename Function, typename ...Functions >
static auto test()
-> decltype(
test< Function, Functions... >(
(std::integral_constant<bool, Compatible>*)nullptr) );
};
};
// This specialization is the recursive case for non-const tracks.
template< typename R, typename ConcreteType,
typename Function, typename ...Functions >
struct Executor< R, ConcreteType, Function, Functions... >
: decltype(
Dispatcher::Switch< R, ConcreteType,
Track, AudioTrack, PlayableTrack,
WaveTrack, LabelTrack, TimeTrack,
NoteTrack >
::template test<Function, Functions... >())
{};
// This specialization is the recursive case for const tracks.
template< typename R, typename ConcreteType,
typename Function, typename ...Functions >
struct Executor< R, const ConcreteType, Function, Functions... >
: decltype(
Dispatcher::Switch< R, ConcreteType,
const Track, const AudioTrack, const PlayableTrack,
const WaveTrack, const LabelTrack, const TimeTrack,
const NoteTrack >
::template test<Function, Functions... >())
{};
public:
// A variadic function taking any number of function objects, each taking
// a pointer to Track or a subclass, maybe const-qualified, and maybe a
// second argument which is a fall-through continuation.
// Each of the function objects (and supplied continuations) returns R.
// Call the first in the sequence that accepts the actual type of the track.
// If no function accepts the track, do nothing and return R{}
// if R is not void.
// If one of the functions invokes the call-through, then the next following
// applicable funtion is called.
template< typename R = void, typename ...Functions >
R TypeSwitch(const Functions &...functions)
{
using WaveExecutor =
Executor< R, WaveTrack, Functions... >;
using NoteExecutor =
Executor< R, NoteTrack, Functions... >;
using LabelExecutor =
Executor< R, LabelTrack, Functions... >;
using TimeExecutor =
Executor< R, TimeTrack, Functions... >;
using DefaultExecutor =
Executor< R, Track >;
enum { All = sizeof...( functions ) };
static_assert(
(1u << All) - 1u ==
(WaveExecutor::SetUsed |
NoteExecutor::SetUsed |
LabelExecutor::SetUsed |
TimeExecutor::SetUsed),
"Uncallable case in Track::TypeSwitch"
);
switch (GetKind()) {
case TrackKind::Wave:
return WaveExecutor{} (this, functions...);
#if defined(USE_MIDI)
case TrackKind::Note:
return NoteExecutor{} (this, functions...);
#endif
case TrackKind::Label:
return LabelExecutor{}(this, functions...);
case TrackKind::Time:
return TimeExecutor{} (this, functions...);
default:
return DefaultExecutor{} (this);
}
}
// This is the overload of TypeSwitch (see above) for const tracks, taking
// callable arguments that only accept arguments that are pointers to const
template< typename R = void, typename ...Functions >
R TypeSwitch(const Functions &...functions) const
{
using WaveExecutor =
Executor< R, const WaveTrack, Functions... >;
using NoteExecutor =
Executor< R, const NoteTrack, Functions... >;
using LabelExecutor =
Executor< R, const LabelTrack, Functions... >;
using TimeExecutor =
Executor< R, const TimeTrack, Functions... >;
using DefaultExecutor =
Executor< R, const Track >;
enum { All = sizeof...( functions ) };
static_assert(
(1u << All) - 1u ==
(WaveExecutor::SetUsed |
NoteExecutor::SetUsed |
LabelExecutor::SetUsed |
TimeExecutor::SetUsed),
"Uncallable case in Track::TypeSwitch"
);
switch (GetKind()) {
case TrackKind::Wave:
return WaveExecutor{} (this, functions...);
#if defined(USE_MIDI)
case TrackKind::Note:
return NoteExecutor{} (this, functions...);
#endif
case TrackKind::Label:
return LabelExecutor{}(this, functions...);
case TrackKind::Time:
return TimeExecutor{} (this, functions...);
default:
return DefaultExecutor{} (this);
}
}
// XMLTagHandler callback methods -- NEW virtual for writing
virtual void WriteXML(XMLWriter &xmlFile) const = 0;
@ -350,6 +719,15 @@ public:
// Checks if sync-lock is on and any track in its sync-lock group is selected.
bool IsSyncLockSelected() const;
// An always-true predicate useful for defining iterators
bool Any() const;
// Frequently useful operands for + and -
bool IsSelected() const;
bool IsSelectedOrSyncLockSelected() const;
bool IsLeader() const;
bool IsSelectedLeader() const;
protected:
std::shared_ptr<Track> FindTrack() override;
@ -407,6 +785,300 @@ protected:
bool mSolo { false };
};
// Functions to encapsulate the checked down-casting of track pointers,
// eliminating possibility of error -- and not quietly casting away const
// typical usage:
// if (auto wt = track_cast<WaveTrack*>(track)) { ... }
template<typename T>
inline typename std::enable_if< std::is_pointer<T>::value, T >::type
track_cast(Track *track)
{
using BareType = typename std::remove_pointer< T >::type;
if (track &&
CompatibleTrackKinds( track_kind<BareType>(), track->GetKind() ))
return reinterpret_cast<T>(track);
else
return nullptr;
}
// Overload for const pointers can cast only to other const pointer types
template<typename T>
inline typename std::enable_if<
std::is_pointer<T>::value &&
std::is_const< typename std::remove_pointer< T >::type >::value,
T
>::type
track_cast(const Track *track)
{
using BareType = typename std::remove_pointer< T >::type;
if (track &&
CompatibleTrackKinds( track_kind<BareType>(), track->GetKind() ))
return reinterpret_cast<T>(track);
else
return nullptr;
}
// new track iterators can eliminate the need to cast the result
template <
typename TrackType // Track or a subclass, maybe const-qualified
> class TrackIter
: public std::iterator<
std::bidirectional_iterator_tag, TrackType *const
>
{
public:
// Type of predicate taking pointer to const TrackType
// TODO C++14: simplify away ::type
using FunctionType = std::function< bool(
typename std::add_pointer<
typename std::add_const<
typename std::remove_pointer<
TrackType
>::type
>::type
>::type
) >;
template<typename Predicate = FunctionType>
TrackIter( TrackNodePointer begin, TrackNodePointer iter,
TrackNodePointer end, const Predicate &pred = {} )
: mBegin( begin ), mIter( iter ), mEnd( end ), mPred( pred )
{
// Establish the class invariant
if (this->mIter != this->mEnd && !this->valid())
this->operator ++ ();
}
// Return an iterator that replaces the predicate, advancing to the first
// position at or after the old position that satisfies the new predicate,
// or to the end.
template < typename Predicate2 >
TrackIter Filter( const Predicate2 &pred2 ) const
{
return { this->mBegin, this->mIter, this->mEnd, pred2 };
}
// Return an iterator that refines the subclass (and not removing const),
// advancing to the first position at or after the old position that
// satisfies the type constraint, or to the end
template < typename TrackType2 >
auto Filter() const
-> typename std::enable_if<
std::is_base_of< TrackType, TrackType2 >::value &&
(!std::is_const<TrackType>::value ||
std::is_const<TrackType2>::value),
TrackIter< TrackType2 >
>::type
{
return { this->mBegin, this->mIter, this->mEnd, this->mPred };
}
const FunctionType &GetPredicate() const
{ return this->mPred; }
// Unlike with STL iterators, this class gives well defined behavior when
// you increment an end iterator: you get the same.
TrackIter &operator ++ ()
{
// Maintain the class invariant
if (this->mIter != this->mEnd) do
++this->mIter.first;
while (this->mIter != this->mEnd && !this->valid() );
return *this;
}
TrackIter operator ++ (int)
{
TrackIter result { *this };
this-> operator ++ ();
return result;
}
// Unlike with STL iterators, this class gives well defined behavior when
// you decrement past the beginning of a range: you wrap and get an end
// iterator.
TrackIter &operator -- ()
{
// Maintain the class invariant
do {
if (this->mIter == this->mBegin)
// Go circularly
this->mIter = this->mEnd;
else
--this->mIter.first;
} while (this->mIter != this->mEnd && !this->valid() );
return *this;
}
TrackIter operator -- (int)
{
TrackIter result { *this };
this->operator -- ();
return result;
}
// Unlike with STL iterators, this class gives well defined behavior when
// you dereference an end iterator: you get a null pointer.
TrackType *operator * () const
{
if (this->mIter == this->mEnd)
return nullptr;
else
// Other methods guarantee that the cast is correct
// (provided no operations on the TrackList invalidated
// underlying iterators or replaced the tracks there)
return static_cast< TrackType * >( &**this->mIter.first );
}
// This might be called operator + ,
// but that might wrongly suggest constant time when the iterator is not
// random access.
TrackIter advance( long amount ) const
{
auto copy = *this;
std::advance( copy, amount );
return copy;
}
friend inline bool operator == (TrackIter a, TrackIter b)
{
// Assume the predicate is not stateful. Just compare the iterators.
return
a.mIter == b.mIter
// Assume this too:
// && a.mBegin == b.mBegin && a.mEnd == b.mEnd
;
}
friend inline bool operator != (TrackIter a, TrackIter b)
{
return !(a == b);
}
private:
bool valid() const
{
// assume mIter != mEnd
const auto pTrack = track_cast< TrackType * >( &**this->mIter.first );
if (!pTrack)
return false;
return !this->mPred || this->mPred( pTrack );
}
// The class invariant is that mIter == mEnd, or else, mIter != mEnd and
// **mIter is of the appropriate subclass and mPred(&**mIter) is true.
TrackNodePointer mBegin, mIter, mEnd;
FunctionType mPred;
};
template <
typename TrackType // Track or a subclass, maybe const-qualified
> struct TrackIterRange
: public IteratorRange< TrackIter< TrackType > >
{
TrackIterRange
( const TrackIter< TrackType > &begin,
const TrackIter< TrackType > &end )
: IteratorRange< TrackIter< TrackType > >
( begin, end )
{}
// Conjoin the filter predicate with another predicate
// Read + as "and"
template< typename Predicate2 >
TrackIterRange operator + ( const Predicate2 &pred2 ) const
{
const auto &pred1 = this->first.GetPredicate();
using Function = typename TrackIter<TrackType>::FunctionType;
const auto &newPred = pred1
? Function{ [=] (typename Function::argument_type track) {
return pred1(track) && pred2(track);
} }
: Function{ pred2 };
return {
this->first.Filter( newPred ),
this->second.Filter( newPred )
};
}
// Specify the added conjunct as a pointer to member function
template< typename R, typename C >
TrackIterRange operator + ( R ( C ::* pmf ) () const ) const
{
return this->operator + ( std::mem_fn( pmf ) );
}
// Conjoin the filter predicate with the negation of another predicate
// Read - as "and not"
template< typename Predicate2 >
TrackIterRange operator - ( const Predicate2 &pred2 ) const
{
using ArgumentType =
typename TrackIterRange::iterator::FunctionType::argument_type;
auto neg = [=] (ArgumentType track) { return !pred2( track ); };
return this->operator + ( neg );
}
// Specify the negated conjunct as a pointer to member function
template< typename R, typename C >
TrackIterRange operator - ( R ( C ::* pmf ) () const ) const
{
return this->operator + ( std::not1( std::mem_fn( pmf ) ) );
}
template< typename TrackType2 >
TrackIterRange< TrackType2 > Filter() const
{
return {
this-> first.template Filter< TrackType2 >(),
this->second.template Filter< TrackType2 >()
};
}
TrackIterRange StartingWith( const Track *pTrack ) const
{
return {
this->find( pTrack ),
this->second
};
}
TrackIterRange EndingAfter( const Track *pTrack ) const
{
return {
this->first,
this->reversal().find( pTrack ).base()
};
}
// Exclude one given track
TrackIterRange Excluding ( const TrackType *pExcluded ) const
{
return this->operator - (
[=](const Track *pTrack){ return pExcluded == pTrack; } );
}
// See Track::TypeSwitch
template< typename ...Functions >
void Visit(const Functions &...functions)
{
for (auto track : *this)
track->TypeSwitch(functions...);
}
// See Track::TypeSwitch
// Visit until flag is false, or no more tracks
template< typename Flag, typename ...Functions >
void VisitWhile(Flag &flag, const Functions &...functions)
{
if ( flag ) for (auto track : *this) {
track->TypeSwitch(functions...);
if (!flag)
break;
}
}
};
class AUDACITY_DLL_API TrackListIterator /* not final */
: public std::iterator< std::forward_iterator_tag, Track *const >
{
@ -529,14 +1201,14 @@ class AUDACITY_DLL_API TrackListCondIterator /* not final */ : public TrackListI
class AUDACITY_DLL_API TrackListOfKindIterator /* not final */ : public TrackListCondIterator
{
public:
TrackListOfKindIterator(int kind, TrackList * val = NULL);
TrackListOfKindIterator(TrackKind kind, TrackList * val = nullptr);
virtual ~TrackListOfKindIterator() {}
protected:
virtual bool Condition(Track *t) override;
private:
int kind;
TrackKind kind;
};
//
@ -547,7 +1219,7 @@ class AUDACITY_DLL_API TrackListOfKindIterator /* not final */ : public TrackLis
class AUDACITY_DLL_API SelectedTrackListOfKindIterator final : public TrackListOfKindIterator
{
public:
SelectedTrackListOfKindIterator(int kind, TrackList * val = NULL) : TrackListOfKindIterator(kind, val) {}
SelectedTrackListOfKindIterator(TrackKind kind, TrackList * val = NULL) : TrackListOfKindIterator(kind, val) {}
virtual ~SelectedTrackListOfKindIterator() {}
protected:
@ -652,6 +1324,8 @@ class TrackList final : public wxEvtHandler, public ListOfTracks
// Destructor
virtual ~TrackList();
// Iteration
// Hide the inherited begin() and end()
using iterator = TrackListIterator;
using const_iterator = TrackListConstIterator;
@ -664,6 +1338,161 @@ class TrackList final : public wxEvtHandler, public ListOfTracks
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
// Turn a pointer into an iterator (constant time).
template < typename TrackType = Track >
auto Find(Track *pTrack)
-> TrackIter< TrackType >
{
if (!pTrack || pTrack->GetOwner().get() != this)
return EndIterator<TrackType>();
else
return MakeTrackIterator<TrackType>( pTrack->GetNode() );
}
// Turn a pointer into an iterator (constant time).
template < typename TrackType = const Track >
auto Find(const Track *pTrack) const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIter< TrackType >
>::type
{
if (!pTrack || pTrack->GetOwner().get() != this)
return EndIterator<TrackType>();
else
return MakeTrackIterator<TrackType>( pTrack->GetNode() );
}
// If the track is not an audio track, or not one of a group of channels,
// return the track itself; else return the first channel of its group --
// in either case as an iterator that will only visit other leader tracks.
// (Generalizing away from the assumption of at most stereo)
TrackIter< Track > FindLeader( Track *pTrack );
TrackIter< const Track >
FindLeader( const Track *pTrack ) const
{
return const_cast<TrackList*>(this)->
FindLeader( const_cast<Track*>(pTrack) ).Filter< const Track >();
}
template < typename TrackType = Track >
auto Any()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >();
}
template < typename TrackType = const Track >
auto Any() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >();
}
// Abbreviating some frequently used cases
template < typename TrackType = Track >
auto Selected()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >( &Track::IsSelected );
}
template < typename TrackType = const Track >
auto Selected() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >( &Track::IsSelected );
}
template < typename TrackType = Track >
auto Leaders()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >( &Track::IsLeader );
}
template < typename TrackType = const Track >
auto Leaders() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >( &Track::IsLeader );
}
template < typename TrackType = Track >
auto SelectedLeaders()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >( &Track::IsSelectedLeader );
}
template < typename TrackType = const Track >
auto SelectedLeaders() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >( &Track::IsSelectedLeader );
}
template<typename TrackType>
static auto SingletonRange( TrackType *pTrack )
-> TrackIterRange< TrackType >
{
return pTrack->GetOwner()->template Any<TrackType>()
.StartingWith( pTrack ).EndingAfter( pTrack );
}
static TrackIterRange< Track >
SyncLockGroup( Track *pTrack );
static TrackIterRange< const Track >
SyncLockGroup( const Track *pTrack )
{
return SyncLockGroup(const_cast<Track*>(pTrack)).Filter<const Track>();
}
private:
template< typename TrackType, typename InTrackType >
static TrackIterRange< TrackType >
Channels_( TrackIter< InTrackType > iter1 )
{
// Assume iterator filters leader tracks
if (*iter1) {
return {
iter1.Filter( &Track::Any )
.template Filter<TrackType>(),
(++iter1).Filter( &Track::Any )
.template Filter<TrackType>()
};
}
else
// empty range
return {
iter1.template Filter<TrackType>(),
iter1.template Filter<TrackType>()
};
}
public:
// Find an iterator range of channels including the given track.
template< typename TrackType >
static auto Channels( TrackType *pTrack )
-> TrackIterRange< TrackType >
{
return Channels_<TrackType>( pTrack->GetOwner()->FindLeader(pTrack) );
}
friend class Track;
friend class TrackListIterator;
friend class SyncLockedTracksIterator;
@ -766,6 +1595,57 @@ class TrackList final : public wxEvtHandler, public ListOfTracks
#endif
private:
// Visit all tracks satisfying a predicate, mutative access
template <
typename TrackType = Track,
typename Pred =
typename TrackIterRange< TrackType >::iterator::FunctionType
>
auto Tracks( const Pred &pred = {} )
-> TrackIterRange< TrackType >
{
auto b = getBegin(), e = getEnd();
return { { b, b, e, pred }, { b, e, e, pred } };
}
// Visit all tracks satisfying a predicate, const access
template <
typename TrackType = const Track,
typename Pred =
typename TrackIterRange< TrackType >::iterator::FunctionType
>
auto Tracks( const Pred &pred = {} ) const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
auto b = const_cast<TrackList*>(this)->getBegin();
auto e = const_cast<TrackList*>(this)->getEnd();
return { { b, b, e, pred }, { b, e, e, pred } };
}
std::pair<Track *, Track *> FindSyncLockGroup(Track *pMember) const;
template < typename TrackType >
TrackIter< TrackType >
MakeTrackIterator( TrackNodePointer iter ) const
{
auto b = const_cast<TrackList*>(this)->getBegin();
auto e = const_cast<TrackList*>(this)->getEnd();
return { b, iter, e };
}
template < typename TrackType >
TrackIter< TrackType >
EndIterator() const
{
auto e = const_cast<TrackList*>(this)->getEnd();
return { e, e, e };
}
TrackIterRange< Track > EmptyRange() const;
bool isNull(TrackNodePointer p) const
{ return (p.second == this && p.first == ListOfTracks::end())
|| (p.second == &mPendingUpdates && p.first == mPendingUpdates.end()); }

View File

@ -529,7 +529,7 @@ void TrackArtist::DrawVRuler
highlight = rect.Contains(context.lastState.GetPosition());
#endif
int kind = t->GetKind();
auto kind = t->GetKind();
// Label and Time tracks do not have a vruler
// But give it a beveled area

View File

@ -119,8 +119,6 @@ private:
// Identifying the type of track
//
int GetKind() const override { return Wave; }
//
// WaveTrack parameters
//
@ -642,7 +640,11 @@ private:
// Protected methods
//
private:
public:
// to do: privatize this
TrackKind GetKind() const override { return TrackKind::Wave; }
private:
//
// Private variables

View File

@ -2060,7 +2060,7 @@ void Effect::CopyInputTracks()
CopyInputTracks(Track::Wave);
}
void Effect::CopyInputTracks(int trackType)
void Effect::CopyInputTracks(TrackKind trackType)
{
// Reset map
mIMap.clear();

View File

@ -368,8 +368,8 @@ protected:
// Use these two methods to copy the input tracks to mOutputTracks, if
// doing the processing on them, and replacing the originals only on success (and not cancel).
void CopyInputTracks(); // trackType = Track::Wave
void CopyInputTracks(int trackType);
void CopyInputTracks(); // trackType = TrackKind::Wave
void CopyInputTracks(TrackKind trackType);
// A global counter of all the successful Effect invocations.
static int nEffectsDone;
@ -479,7 +479,7 @@ protected:
sampleCount mSampleCnt;
// type of the tracks on mOutputTracks
int mOutputTracksType;
TrackKind mOutputTracksType;
// Used only by the base Effect class
//