mirror of
https://github.com/cookiengineer/audacity
synced 2025-05-02 16:49:41 +02:00
Window function improvemenets: ...
fix off-by-one inconsistencies in the sum-of-cosines windows. Implement derivatives of the window functions, needed for reassigned spectrograms.
This commit is contained in:
parent
ec742f76e7
commit
c4f7e25c1c
327
src/FFT.cpp
327
src/FFT.cpp
@ -514,82 +514,323 @@ const wxChar *WindowFuncName(int whichFunction)
|
||||
}
|
||||
}
|
||||
|
||||
void WindowFunc(int whichFunction, int NumSamples, float *in)
|
||||
void NewWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *in)
|
||||
{
|
||||
int i;
|
||||
double A;
|
||||
if (extraSample)
|
||||
--NumSamples;
|
||||
|
||||
switch( whichFunction )
|
||||
{
|
||||
switch (whichFunction) {
|
||||
default:
|
||||
fprintf(stderr,"FFT::WindowFunc - Invalid window function: %d\n",whichFunction);
|
||||
fprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
|
||||
break;
|
||||
case eWinFuncRectangular:
|
||||
// Multiply all by 1.0f -- do nothing
|
||||
break;
|
||||
|
||||
case eWinFuncBartlett:
|
||||
{
|
||||
// Bartlett (triangular) window
|
||||
for (i = 0; i < NumSamples / 2; i++) {
|
||||
in[i] *= (i / (float) (NumSamples / 2));
|
||||
in[i + (NumSamples / 2)] *=
|
||||
(1.0 - (i / (float) (NumSamples / 2)));
|
||||
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
|
||||
const float denom = NumSamples / 2.0f;
|
||||
in[0] = 0.0f;
|
||||
for (int ii = 1;
|
||||
ii <= nPairs; // Yes, <=
|
||||
++ii) {
|
||||
const float value = ii / denom;
|
||||
in[ii] *= value;
|
||||
in[NumSamples - ii] *= value;
|
||||
}
|
||||
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
|
||||
// When odd, the value of 1.0 is not reached
|
||||
}
|
||||
break;
|
||||
case eWinFuncHamming:
|
||||
{
|
||||
// Hamming
|
||||
for (i = 0; i < NumSamples; i++)
|
||||
in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1));
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
static const double coeff0 = 0.54, coeff1 = -0.46;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
|
||||
}
|
||||
break;
|
||||
case eWinFuncHanning:
|
||||
{
|
||||
// Hanning
|
||||
for (i = 0; i < NumSamples; i++)
|
||||
in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1));
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
static const double coeff0 = 0.5, coeff1 = -0.5;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
|
||||
}
|
||||
break;
|
||||
case eWinFuncBlackman:
|
||||
{
|
||||
// Blackman
|
||||
for (i = 0; i < NumSamples; i++) {
|
||||
in[i] *= 0.42 - 0.5 * cos (2 * M_PI * i / (NumSamples - 1)) + 0.08 * cos (4 * M_PI * i / (NumSamples - 1));
|
||||
}
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
const double multiplier2 = 2 * multiplier;
|
||||
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
|
||||
}
|
||||
break;
|
||||
case eWinFuncBlackmanHarris:
|
||||
{
|
||||
// Blackman-Harris
|
||||
for (i = 0; i < NumSamples; i++) {
|
||||
in[i] *= 0.35875 - 0.48829 * cos(2 * M_PI * i /(NumSamples-1)) + 0.14128 * cos(4 * M_PI * i/(NumSamples-1)) - 0.01168 * cos(6 * M_PI * i/(NumSamples-1));
|
||||
}
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
const double multiplier2 = 2 * multiplier;
|
||||
const double multiplier3 = 3 * multiplier;
|
||||
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
|
||||
}
|
||||
break;
|
||||
case eWinFuncWelch:
|
||||
{
|
||||
// Welch
|
||||
for (i = 0; i < NumSamples; i++) {
|
||||
in[i] *= 4*i/(float)NumSamples*(1-(i/(float)NumSamples));
|
||||
const float N = NumSamples;
|
||||
for (int ii = 0; ii < NumSamples; ++ii) {
|
||||
const float iOverN = ii / N;
|
||||
in[ii] *= 4 * iOverN * (1 - iOverN);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case eWinFuncGaussian25:
|
||||
{
|
||||
// Gaussian (a=2.5)
|
||||
// Precalculate some values, and simplify the fmla to try and reduce overhead
|
||||
static const double A = -2 * 2.5*2.5;
|
||||
const float N = NumSamples;
|
||||
for (int ii = 0; ii < NumSamples; ++ii) {
|
||||
const float iOverN = ii / N;
|
||||
// full
|
||||
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
|
||||
// reduced
|
||||
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
||||
}
|
||||
}
|
||||
break;
|
||||
case eWinFuncGaussian35:
|
||||
{
|
||||
// Gaussian (a=3.5)
|
||||
static const double A = -2 * 3.5*3.5;
|
||||
const float N = NumSamples;
|
||||
for (int ii = 0; ii < NumSamples; ++ii) {
|
||||
const float iOverN = ii / N;
|
||||
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
||||
}
|
||||
}
|
||||
break;
|
||||
case eWinFuncGaussian45:
|
||||
{
|
||||
// Gaussian (a=4.5)
|
||||
static const double A = -2 * 4.5*4.5;
|
||||
const float N = NumSamples;
|
||||
for (int ii = 0; ii < NumSamples; ++ii) {
|
||||
const float iOverN = ii / N;
|
||||
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if (extraSample && whichFunction != eWinFuncRectangular) {
|
||||
double value = 0.0;
|
||||
switch (whichFunction) {
|
||||
case eWinFuncHamming:
|
||||
value = 0.08;
|
||||
break;
|
||||
case eWinFuncGaussian25:
|
||||
value = exp(-2 * 2.5 * 2.5 * 0.25);
|
||||
break;
|
||||
case eWinFuncGaussian35:
|
||||
value = exp(-2 * 3.5 * 3.5 * 0.25);
|
||||
break;
|
||||
case eWinFuncGaussian45:
|
||||
value = exp(-2 * 4.5 * 4.5 * 0.25);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
in[NumSamples] *= value;
|
||||
}
|
||||
}
|
||||
|
||||
// See cautions in FFT.h !
|
||||
void WindowFunc(int whichFunction, int NumSamples, float *in)
|
||||
{
|
||||
bool extraSample = false;
|
||||
switch (whichFunction)
|
||||
{
|
||||
case eWinFuncHamming:
|
||||
case eWinFuncHanning:
|
||||
case eWinFuncBlackman:
|
||||
case eWinFuncBlackmanHarris:
|
||||
extraSample = true;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
case eWinFuncBartlett:
|
||||
// PRL: Do nothing here either
|
||||
// But I want to comment that the old function did this case
|
||||
// wrong in the second half of the array, in case NumSamples was odd
|
||||
// but I think that never happened, so I am not bothering to preserve that
|
||||
break;
|
||||
}
|
||||
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
|
||||
}
|
||||
|
||||
void DerivativeOfWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *in)
|
||||
{
|
||||
if (eWinFuncRectangular == whichFunction)
|
||||
{
|
||||
// Rectangular
|
||||
// There are deltas at the ends
|
||||
--NumSamples;
|
||||
// in[0] *= 1.0f;
|
||||
for (int ii = 1; ii < NumSamples; ++ii)
|
||||
in[ii] = 0.0f;
|
||||
in[NumSamples] *= -1.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
if (extraSample)
|
||||
--NumSamples;
|
||||
|
||||
double A;
|
||||
switch (whichFunction) {
|
||||
case eWinFuncBartlett:
|
||||
{
|
||||
// Bartlett (triangular) window
|
||||
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
|
||||
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
|
||||
const float value = 2.0f / NumSamples;
|
||||
in[0] *=
|
||||
// Average the two limiting values of discontinuous derivative
|
||||
value / 2.0f;
|
||||
for (int ii = 1;
|
||||
ii <= nPairs; // Yes, <=
|
||||
++ii) {
|
||||
in[ii] *= value;
|
||||
in[NumSamples - ii] *= -value;
|
||||
}
|
||||
if (NumSamples % 2 == 0)
|
||||
// Average the two limiting values of discontinuous derivative
|
||||
in[NumSamples / 2] = 0.0f;
|
||||
if (extraSample)
|
||||
in[NumSamples] *=
|
||||
// Average the two limiting values of discontinuous derivative
|
||||
-value / 2.0f;
|
||||
else
|
||||
// Halve the multiplier previously applied
|
||||
// Average the two limiting values of discontinuous derivative
|
||||
in[NumSamples - 1] *= 0.5f;
|
||||
}
|
||||
break;
|
||||
case eWinFuncHamming:
|
||||
{
|
||||
// Hamming
|
||||
// There are deltas at the ends
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
|
||||
in[0] *= coeff0;
|
||||
if (!extraSample)
|
||||
--NumSamples;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= - coeff1 * sin(ii * multiplier);
|
||||
if (extraSample)
|
||||
in[NumSamples] *= - coeff0;
|
||||
else
|
||||
// slightly different
|
||||
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
|
||||
}
|
||||
break;
|
||||
case eWinFuncHanning:
|
||||
{
|
||||
// Hanning
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
const double coeff1 = -0.5 * multiplier;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= - coeff1 * sin(ii * multiplier);
|
||||
if (extraSample)
|
||||
in[NumSamples] = 0.0f;
|
||||
}
|
||||
break;
|
||||
case eWinFuncBlackman:
|
||||
{
|
||||
// Blackman
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
const double multiplier2 = 2 * multiplier;
|
||||
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
|
||||
if (extraSample)
|
||||
in[NumSamples] = 0.0f;
|
||||
}
|
||||
break;
|
||||
case eWinFuncBlackmanHarris:
|
||||
{
|
||||
// Blackman-Harris
|
||||
const double multiplier = 2 * M_PI / NumSamples;
|
||||
const double multiplier2 = 2 * multiplier;
|
||||
const double multiplier3 = 3 * multiplier;
|
||||
const double coeff1 = -0.48829 * multiplier,
|
||||
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
|
||||
for (int ii = 0; ii < NumSamples; ++ii)
|
||||
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
|
||||
if (extraSample)
|
||||
in[NumSamples] = 0.0f;
|
||||
}
|
||||
break;
|
||||
case eWinFuncWelch:
|
||||
{
|
||||
// Welch
|
||||
const float N = NumSamples;
|
||||
const float NN = NumSamples * NumSamples;
|
||||
for (int ii = 0; ii < NumSamples; ++ii) {
|
||||
in[ii] *= 4 * (N - ii - ii) / NN;
|
||||
}
|
||||
if (extraSample)
|
||||
in[NumSamples] = 0.0f;
|
||||
// Average the two limiting values of discontinuous derivative
|
||||
in[0] /= 2.0f;
|
||||
in[NumSamples - 1] /= 2.0f;
|
||||
}
|
||||
break;
|
||||
case eWinFuncGaussian25:
|
||||
// Gaussian (a=2.5)
|
||||
// Precalculate some values, and simplify the fmla to try and reduce overhead
|
||||
A=-2*2.5*2.5;
|
||||
|
||||
for (i = 0; i < NumSamples; i++) {
|
||||
// full
|
||||
// in[i] *= exp(-0.5*(A*((i-NumSamples/2)/NumSamples/2))*(A*((i-NumSamples/2)/NumSamples/2)));
|
||||
// reduced
|
||||
in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples)));
|
||||
}
|
||||
break;
|
||||
A = -2 * 2.5*2.5;
|
||||
goto Gaussian;
|
||||
case eWinFuncGaussian35:
|
||||
// Gaussian (a=3.5)
|
||||
A=-2*3.5*3.5;
|
||||
for (i = 0; i < NumSamples; i++) {
|
||||
// reduced
|
||||
in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples)));
|
||||
}
|
||||
break;
|
||||
A = -2 * 3.5*3.5;
|
||||
goto Gaussian;
|
||||
case eWinFuncGaussian45:
|
||||
// Gaussian (a=4.5)
|
||||
A=-2*4.5*4.5;
|
||||
|
||||
for (i = 0; i < NumSamples; i++) {
|
||||
// reduced
|
||||
in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples)));
|
||||
A = -2 * 4.5*4.5;
|
||||
goto Gaussian;
|
||||
Gaussian:
|
||||
{
|
||||
// Gaussian (a=2.5)
|
||||
// There are deltas at the ends
|
||||
const float invN = 1.0f / NumSamples;
|
||||
const float invNN = invN * invN;
|
||||
// Simplify formula from the loop for ii == 0, add term for the delta
|
||||
in[0] *= exp(A * 0.25) * (1 - invN);
|
||||
if (!extraSample)
|
||||
--NumSamples;
|
||||
for (int ii = 1; ii < NumSamples; ++ii) {
|
||||
const float iOverN = ii * invN;
|
||||
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
|
||||
}
|
||||
if (extraSample)
|
||||
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
|
||||
else {
|
||||
// Slightly different
|
||||
const float iOverN = NumSamples * invN;
|
||||
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
|
||||
}
|
||||
}
|
||||
|
38
src/FFT.h
38
src/FFT.h
@ -45,6 +45,9 @@
|
||||
* 9: Gaussian(a=4.5)
|
||||
*/
|
||||
|
||||
#include <wx/defs.h>
|
||||
#include <wx/wxchar.h>
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.14159265358979323846 /* pi */
|
||||
#endif
|
||||
@ -93,18 +96,12 @@ void FFT(int NumSamples,
|
||||
float *RealIn, float *ImagIn, float *RealOut, float *ImagOut);
|
||||
|
||||
/*
|
||||
* Applies a windowing function to the data in place
|
||||
*
|
||||
* 0: Rectangular (no window)
|
||||
* 1: Bartlett (triangular)
|
||||
* 2: Hamming
|
||||
* 3: Hanning
|
||||
* 4: Blackman
|
||||
* 5: Blackman-Harris
|
||||
* 6: Welch
|
||||
* 7: Gaussian(a=2.5)
|
||||
* 8: Gaussian(a=3.5)
|
||||
* 9: Gaussian(a=4.5)
|
||||
* Multiply values in data by values of the chosen function
|
||||
* DO NOT REUSE! Prefer NewWindowFunc instead
|
||||
* This version was inconsistent whether the window functions were
|
||||
* symmetrical about NumSamples / 2, or about (NumSamples - 1) / 2
|
||||
* It remains for compatibility until we decide to upgrade all the old uses
|
||||
* All functions have 0 in data[0] except Rectangular, Hamming and Gaussians
|
||||
*/
|
||||
|
||||
enum eWindowFunctions
|
||||
@ -124,6 +121,23 @@ enum eWindowFunctions
|
||||
|
||||
void WindowFunc(int whichFunction, int NumSamples, float *data);
|
||||
|
||||
/*
|
||||
* Multiply values in data by values of the chosen function
|
||||
* All functions are symmetrical about NumSamples / 2 if extraSample is false,
|
||||
* otherwise about (NumSamples - 1) / 2
|
||||
* All functions have 0 in data[0] except Rectangular, Hamming and Gaussians
|
||||
*/
|
||||
void NewWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *data);
|
||||
|
||||
/*
|
||||
* Multiply values in data by derivative of the chosen function, assuming
|
||||
* sampling interval is unit
|
||||
* All functions are symmetrical about NumSamples / 2 if extraSample is false,
|
||||
* otherwise about (NumSamples - 1) / 2
|
||||
* All functions have 0 in data[0] except Rectangular, Hamming and Gaussians
|
||||
*/
|
||||
void DerivativeOfWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *data);
|
||||
|
||||
/*
|
||||
* Returns the name of the windowing function (for UI display)
|
||||
*/
|
||||
|
Loading…
x
Reference in New Issue
Block a user