mirror of
https://github.com/cookiengineer/audacity
synced 2025-10-10 16:43:33 +02:00
Update Nyquist to v3.09.
This commit is contained in:
@@ -9,7 +9,7 @@
|
||||
#include "cext.h"
|
||||
#include "gate.h"
|
||||
|
||||
void gate_free();
|
||||
void gate_free(snd_susp_type a_susp);
|
||||
|
||||
|
||||
typedef struct gate_susp_struct {
|
||||
@@ -43,24 +43,27 @@ typedef struct gate_susp_struct {
|
||||
#define ST_RISE 5
|
||||
|
||||
/* Overview:
|
||||
This operation generates an exponential rise and decay suitable for implementing a
|
||||
noise gate. The decay starts when the signal drops below threshold and stays there
|
||||
for longer than lookahead.
|
||||
Decay continues until the value reaches floor, at which point the decay stops
|
||||
and the value is held constant. Either during the decay or after the floor is reached,
|
||||
if the signal goes above threshold, then the output value will rise to 1.0 (0dB) at
|
||||
the point the signal crosses the threshold. Again, lookahead is used, so the rise
|
||||
actually starts before the signal crosses the threshold. The rise rate is constant
|
||||
and set so that a rise from floor to 0dB occurs in the specified risetime. Similarly,
|
||||
the fall rate is constant such that a fall from 0dB to the floor takes falltime.
|
||||
This operation generates an exponential rise and decay suitable for
|
||||
implementing a noise gate. The decay starts when the signal drops
|
||||
below threshold and stays there for longer than lookahead.
|
||||
Decay continues until the value reaches floor, at which point the
|
||||
decay stops and the value is held constant. Either during the decay
|
||||
or after the floor is reached, if the signal goes above threshold,
|
||||
then the output value will rise to 1.0 (0dB) at the point the
|
||||
signal crosses the threshold. Again, lookahead is used, so the rise
|
||||
actually starts before the signal crosses the threshold. The rise
|
||||
rate is constant and set so that a rise from floor to 0dB occurs
|
||||
in the specified risetime. Similarly, the fall rate is constant
|
||||
such that a fall from 0dB to the floor takes falltime.
|
||||
|
||||
Rather than looking ahead, the output actually lags the input by lookahead. The caller
|
||||
should advance the time of the input signal in order to get a correct output signal,
|
||||
and this will be taken care of in Lisp code.
|
||||
Rather than looking ahead, the output actually lags the input by
|
||||
lookahead. The caller should advance the time of the input signal
|
||||
in order to get a correct output signal, and this will be taken
|
||||
care of in Lisp code.
|
||||
|
||||
The implementation is a finite-state machine that simultaneously computes the value
|
||||
and scans ahead for threshold crossings. Time points, remembered as sample counts are
|
||||
saved in variables:
|
||||
The implementation is a finite-state machine that simultaneously
|
||||
computes the value and scans ahead for threshold crossings. Time
|
||||
points, remembered as sample counts are saved in variables:
|
||||
on_count -- the time at which the rise should complete
|
||||
off_count -- the time at which the fall should begin
|
||||
rise_factor -- multiply by this to get exponential rise
|
||||
@@ -103,8 +106,9 @@ void compute_start_rise(gate_susp_type susp)
|
||||
}
|
||||
|
||||
|
||||
void gate_n_fetch(register gate_susp_type susp, snd_list_type snd_list)
|
||||
void gate_n_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
||||
{
|
||||
gate_susp_type susp = (gate_susp_type) a_susp;
|
||||
int cnt = 0; /* how many samples computed */
|
||||
int togo;
|
||||
int n;
|
||||
@@ -137,6 +141,7 @@ void gate_n_fetch(register gate_susp_type susp, snd_list_type snd_list)
|
||||
if (susp->terminate_cnt != UNKNOWN &&
|
||||
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
||||
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
||||
if (togo < 0) togo = 0; /* avoids rounding errros */
|
||||
if (togo == 0) break;
|
||||
}
|
||||
|
||||
@@ -150,76 +155,76 @@ void gate_n_fetch(register gate_susp_type susp, snd_list_type snd_list)
|
||||
signal_ptr_reg = susp->signal_ptr;
|
||||
out_ptr_reg = out_ptr;
|
||||
if (n) do { /* the inner sample computation loop */
|
||||
{
|
||||
sample_type future = *signal_ptr_reg++;
|
||||
long now = susp->susp.current + cnt + togo - n;
|
||||
|
||||
switch (state_reg) {
|
||||
/* hold at 1.0 and look for the moment to begin fall: */
|
||||
case ST_HOLD:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
} else if (now >= off_count_reg) {
|
||||
state_reg = ST_FALL;
|
||||
stop_count_reg = (long) (now + susp->fall_time);
|
||||
susp->start_fall = now;
|
||||
{
|
||||
sample_type future = *signal_ptr_reg++;
|
||||
long now = susp->susp.current + cnt + togo - n;
|
||||
|
||||
switch (state_reg) {
|
||||
/* hold at 1.0 and look for the moment to begin fall: */
|
||||
case ST_HOLD:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
} else if (now >= off_count_reg) {
|
||||
state_reg = ST_FALL;
|
||||
stop_count_reg = (long) (now + susp->fall_time);
|
||||
susp->start_fall = now;
|
||||
}
|
||||
break;
|
||||
/* fall until stop_count_reg while looking for next rise time */
|
||||
case ST_FALL:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = susp->on_count = now + delay_len_reg;
|
||||
compute_start_rise(susp);
|
||||
state_reg = ST_FALL_UNTIL;
|
||||
} else if (now == stop_count_reg) {
|
||||
state_reg = ST_OFF;
|
||||
value_reg = susp->floor;
|
||||
} else value_reg *= susp->fall_factor;
|
||||
break;
|
||||
/* fall until start_rise while looking for next fall time */
|
||||
case ST_FALL_UNTIL:
|
||||
value_reg *= susp->fall_factor;
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
}
|
||||
if (now >= susp->start_rise) {
|
||||
state_reg = ST_RISE;
|
||||
} else if (now >= stop_count_reg) {
|
||||
state_reg = ST_OFF_UNTIL;
|
||||
value_reg = susp->floor;
|
||||
}
|
||||
break;
|
||||
/* hold at floor (minimum value_reg) and look for next rise time */
|
||||
case ST_OFF:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = susp->on_count = now + delay_len_reg;
|
||||
compute_start_rise(susp);
|
||||
state_reg = ST_OFF_UNTIL;
|
||||
}
|
||||
break;
|
||||
/* hold at floor until start_rise while looking for next fall time */
|
||||
case ST_OFF_UNTIL:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
}
|
||||
if (now >= susp->start_rise) {
|
||||
state_reg = ST_RISE;
|
||||
}
|
||||
break;
|
||||
/* rise while looking for fall time */
|
||||
case ST_RISE:
|
||||
value_reg *= susp->rise_factor;
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
}
|
||||
if (now >= susp->on_count) {
|
||||
value_reg = 1.0;
|
||||
state_reg = ST_HOLD;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
/* fall until stop_count_reg while looking for next rise time */
|
||||
case ST_FALL:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = susp->on_count = now + delay_len_reg;
|
||||
compute_start_rise(susp);
|
||||
state_reg = ST_FALL_UNTIL;
|
||||
} else if (now == stop_count_reg) {
|
||||
state_reg = ST_OFF;
|
||||
value_reg = susp->floor;
|
||||
} else value_reg *= susp->fall_factor;
|
||||
break;
|
||||
/* fall until start_rise while looking for next fall time */
|
||||
case ST_FALL_UNTIL:
|
||||
value_reg *= susp->fall_factor;
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
}
|
||||
if (now >= susp->start_rise) {
|
||||
state_reg = ST_RISE;
|
||||
} else if (now >= stop_count_reg) {
|
||||
state_reg = ST_OFF_UNTIL;
|
||||
value_reg = susp->floor;
|
||||
}
|
||||
break;
|
||||
/* hold at floor (minimum value_reg) and look for next rise time */
|
||||
case ST_OFF:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = susp->on_count = now + delay_len_reg;
|
||||
compute_start_rise(susp);
|
||||
state_reg = ST_OFF_UNTIL;
|
||||
}
|
||||
break;
|
||||
/* hold at floor until start_rise while looking for next fall time */
|
||||
case ST_OFF_UNTIL:
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
}
|
||||
if (now >= susp->start_rise) {
|
||||
state_reg = ST_RISE;
|
||||
}
|
||||
break;
|
||||
/* rise while looking for fall time */
|
||||
case ST_RISE:
|
||||
value_reg *= susp->rise_factor;
|
||||
if (future >= threshold_reg) {
|
||||
off_count_reg = now + delay_len_reg;
|
||||
}
|
||||
if (now >= susp->on_count) {
|
||||
value_reg = 1.0;
|
||||
state_reg = ST_HOLD;
|
||||
}
|
||||
break;
|
||||
}
|
||||
*out_ptr_reg++ = (sample_type) value_reg;
|
||||
};
|
||||
*out_ptr_reg++ = (sample_type) value_reg;
|
||||
};
|
||||
} while (--n); /* inner loop */
|
||||
|
||||
togo -= n;
|
||||
@@ -244,11 +249,9 @@ void gate_n_fetch(register gate_susp_type susp, snd_list_type snd_list)
|
||||
} /* gate_n_fetch */
|
||||
|
||||
|
||||
void gate_toss_fetch(susp, snd_list)
|
||||
register gate_susp_type susp;
|
||||
snd_list_type snd_list;
|
||||
{
|
||||
long final_count = susp->susp.toss_cnt;
|
||||
void gate_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
||||
{
|
||||
gate_susp_type susp = (gate_susp_type) a_susp;
|
||||
time_type final_time = susp->susp.t0;
|
||||
long n;
|
||||
|
||||
@@ -263,25 +266,28 @@ void gate_toss_fetch(susp, snd_list)
|
||||
susp->signal_ptr += n;
|
||||
susp_took(signal_cnt, n);
|
||||
susp->susp.fetch = susp->susp.keep_fetch;
|
||||
(*(susp->susp.fetch))(susp, snd_list);
|
||||
(*(susp->susp.fetch))(a_susp, snd_list);
|
||||
}
|
||||
|
||||
|
||||
void gate_mark(gate_susp_type susp)
|
||||
void gate_mark(snd_susp_type a_susp)
|
||||
{
|
||||
gate_susp_type susp = (gate_susp_type) a_susp;
|
||||
sound_xlmark(susp->signal);
|
||||
}
|
||||
|
||||
|
||||
void gate_free(gate_susp_type susp)
|
||||
void gate_free(snd_susp_type a_susp)
|
||||
{
|
||||
gate_susp_type susp = (gate_susp_type) a_susp;
|
||||
sound_unref(susp->signal);
|
||||
ffree_generic(susp, sizeof(gate_susp_node), "gate_free");
|
||||
}
|
||||
|
||||
|
||||
void gate_print_tree(gate_susp_type susp, int n)
|
||||
void gate_print_tree(snd_susp_type a_susp, int n)
|
||||
{
|
||||
gate_susp_type susp = (gate_susp_type) a_susp;
|
||||
indent(n);
|
||||
stdputstr("signal:");
|
||||
sound_print_tree_1(susp->signal, n);
|
||||
@@ -293,7 +299,6 @@ sound_type snd_make_gate(sound_type signal, time_type lookahead, double risetime
|
||||
register gate_susp_type susp;
|
||||
rate_type sr = signal->sr;
|
||||
time_type t0 = signal->t0;
|
||||
int interp_desc = 0;
|
||||
sample_type scale_factor = 1.0F;
|
||||
time_type t0_min = t0;
|
||||
/* combine scale factors of linear inputs (SIGNAL) */
|
||||
@@ -327,8 +332,8 @@ sound_type snd_make_gate(sound_type signal, time_type lookahead, double risetime
|
||||
/* how many samples to toss before t0: */
|
||||
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
|
||||
if (susp->susp.toss_cnt > 0) {
|
||||
susp->susp.keep_fetch = susp->susp.fetch;
|
||||
susp->susp.fetch = gate_toss_fetch;
|
||||
susp->susp.keep_fetch = susp->susp.fetch;
|
||||
susp->susp.fetch = gate_toss_fetch;
|
||||
}
|
||||
|
||||
/* initialize susp state */
|
||||
|
Reference in New Issue
Block a user