mirror of
https://github.com/cookiengineer/audacity
synced 2025-10-22 14:32:58 +02:00
Update Nyquist to v3.09.
This commit is contained in:
@@ -6,6 +6,34 @@
|
||||
* of the first parameter.
|
||||
*/
|
||||
|
||||
/* Original convolve.c modified to do fast convolution. Here are some
|
||||
* notes:
|
||||
* The first arg is arbitrary length. The second arg is the impulse
|
||||
* response, which is converted into a table. Tables have limited maximum
|
||||
* size, which is good because we're going to use a single FFT for the
|
||||
* whole impulse response.
|
||||
*
|
||||
* The fast convolution works like this:
|
||||
* inputs are x_snd and h_snd.
|
||||
* Make h_snd into a table ht of size N, where N is a power of 2.
|
||||
* Copy ht with zero fill into H of size 2N.
|
||||
* Compute FFT of H in place.
|
||||
* Iterate:
|
||||
* Copy N samples of x_snd into X and zero fill to size 2N.
|
||||
* Compute FFT of X in place.
|
||||
* Multiply X by H (result goes into X).
|
||||
* Compute IFFT of X in place
|
||||
* Add X to R.
|
||||
* Now N samples of R can be output.
|
||||
* Copy 2nd half of R to first half and zero the 2nd half.
|
||||
* (this is actually done first, and the first time does
|
||||
* nothing because R is initially filled with zeros)
|
||||
*
|
||||
* Length of output is length of x input + length of h
|
||||
*/
|
||||
|
||||
#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
|
||||
#include <math.h>
|
||||
#include "stdio.h"
|
||||
#ifndef mips
|
||||
#include "stdlib.h"
|
||||
@@ -15,6 +43,8 @@
|
||||
|
||||
#include "falloc.h"
|
||||
#include "cext.h"
|
||||
#include "fftlib.h"
|
||||
#include "fftext.h"
|
||||
#include "convolve.h"
|
||||
|
||||
void convolve_free();
|
||||
@@ -28,13 +58,13 @@ typedef struct convolve_susp_struct {
|
||||
long x_snd_cnt;
|
||||
sample_block_values_type x_snd_ptr;
|
||||
|
||||
table_type table;
|
||||
sample_type *h_buf;
|
||||
double length_of_h;
|
||||
long h_len;
|
||||
long x_buf_len;
|
||||
sample_type *x_buffer_pointer;
|
||||
sample_type *x_buffer_current;
|
||||
sample_type *H; // the FFT of h_snd
|
||||
int h_len; // true length of H
|
||||
int N; // length of block, FFTs are of size 2*N
|
||||
int M; // log2 of 2*N, the FFT size
|
||||
sample_type *X;
|
||||
sample_type *R; // result buffer where output is summed
|
||||
sample_type *R_current;
|
||||
} convolve_susp_node, *convolve_susp_type;
|
||||
|
||||
|
||||
@@ -52,8 +82,9 @@ void h_reverse(sample_type *h, long len)
|
||||
}
|
||||
|
||||
|
||||
void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list)
|
||||
void convolve_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
||||
{
|
||||
convolve_susp_type susp = (convolve_susp_type) a_susp;
|
||||
int cnt = 0; /* how many samples computed */
|
||||
int togo;
|
||||
int n;
|
||||
@@ -62,152 +93,118 @@ void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list)
|
||||
|
||||
register sample_block_values_type out_ptr_reg;
|
||||
|
||||
register sample_type * h_buf_reg;
|
||||
register long h_len_reg;
|
||||
register long x_buf_len_reg;
|
||||
register sample_type * x_buffer_pointer_reg;
|
||||
register sample_type * x_buffer_current_reg;
|
||||
register sample_type x_snd_scale_reg = susp->x_snd->scale;
|
||||
register sample_block_values_type x_snd_ptr_reg;
|
||||
sample_type *R = susp->R;
|
||||
sample_type *R_current;
|
||||
int N = susp->N;
|
||||
falloc_sample_block(out, "convolve_s_fetch");
|
||||
out_ptr = out->samples;
|
||||
snd_list->block = out;
|
||||
|
||||
while (cnt < max_sample_block_len) { /* outer loop */
|
||||
/* first compute how many samples to generate in inner loop: */
|
||||
/* don't overflow the output sample block: */
|
||||
togo = max_sample_block_len - cnt;
|
||||
|
||||
/* don't run past the x_snd input sample block: */
|
||||
/* based on susp_check_term_log_samples, but offset by h_len */
|
||||
|
||||
/* THIS IS EXPANDED BELOW
|
||||
* susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt);
|
||||
*/
|
||||
if (susp->x_snd_cnt == 0) {
|
||||
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
|
||||
|
||||
/* THIS IS EXPANDED BELOW
|
||||
*logical_stop_test(x_snd, susp->x_snd_cnt);
|
||||
*/
|
||||
if (susp->x_snd->logical_stop_cnt ==
|
||||
susp->x_snd->current - susp->x_snd_cnt) {
|
||||
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
|
||||
(snd_susp_type) susp, susp->x_snd_cnt);
|
||||
}
|
||||
|
||||
/* THIS IS EXPANDED BELOW
|
||||
* terminate_test(x_snd_ptr, x_snd, susp->x_snd_cnt);
|
||||
*/
|
||||
if (susp->x_snd_ptr == zero_block->samples) {
|
||||
/* ### modify this to terminate at an offset of (susp->h_len) */
|
||||
/* Note: in the min_cnt function, susp->x_snd_cnt is *subtracted*
|
||||
* from susp->x_snd->current to form the terminate time, so to
|
||||
* increase the time, we need to *subtract* susp->h_len, which
|
||||
* due to the double negative, *adds* susp->h_len to the ultimate
|
||||
* terminate time calculation.
|
||||
/* first compute how many samples to generate in inner loop: */
|
||||
/* don't overflow the output sample block: */
|
||||
togo = max_sample_block_len - cnt;
|
||||
/* if we need output samples, generate them here */
|
||||
if (susp->R_current >= R + N) {
|
||||
/* Copy N samples of x_snd into X and zero fill to size 2N */
|
||||
int i = 0;
|
||||
sample_type *X = susp->X;
|
||||
sample_type *H = susp->H;
|
||||
int to_copy;
|
||||
while (i < N) {
|
||||
if (susp->x_snd_cnt == 0) {
|
||||
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
|
||||
if (susp->x_snd->logical_stop_cnt ==
|
||||
susp->x_snd->current - susp->x_snd_cnt) {
|
||||
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
|
||||
(snd_susp_type) susp, susp->x_snd_cnt);
|
||||
}
|
||||
}
|
||||
if (susp->x_snd_ptr == zero_block->samples) {
|
||||
min_cnt(&susp->terminate_cnt, susp->x_snd,
|
||||
(snd_susp_type) susp, susp->x_snd_cnt);
|
||||
/* extend the output to include impulse response */
|
||||
susp->terminate_cnt += susp->h_len;
|
||||
}
|
||||
/* copy no more than the remaining space and no more than
|
||||
* the amount remaining in the block
|
||||
*/
|
||||
min_cnt(&susp->terminate_cnt, susp->x_snd,
|
||||
(snd_susp_type) susp, susp->x_snd_cnt - susp->h_len);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
togo = min(togo, susp->x_snd_cnt);
|
||||
|
||||
/* don't run past terminate time */
|
||||
if (susp->terminate_cnt != UNKNOWN &&
|
||||
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
||||
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
||||
if (togo == 0) break;
|
||||
}
|
||||
|
||||
|
||||
/* don't run past logical stop time */
|
||||
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
|
||||
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
||||
/* break if to_stop == 0 (we're at the logical stop)
|
||||
* AND cnt > 0 (we're not at the beginning of the
|
||||
* output block).
|
||||
*/
|
||||
if (to_stop < togo) {
|
||||
if (to_stop == 0) {
|
||||
if (cnt) {
|
||||
togo = 0;
|
||||
break;
|
||||
} else /* keep togo as is: since cnt == 0, we
|
||||
* can set the logical stop flag on this
|
||||
* output block
|
||||
*/
|
||||
susp->logically_stopped = true;
|
||||
} else /* limit togo so we can start a new
|
||||
* block at the LST
|
||||
*/
|
||||
togo = to_stop;
|
||||
}
|
||||
}
|
||||
|
||||
n = togo;
|
||||
h_buf_reg = susp->h_buf;
|
||||
h_len_reg = susp->h_len;
|
||||
x_buf_len_reg = susp->x_buf_len;
|
||||
x_buffer_pointer_reg = susp->x_buffer_pointer;
|
||||
x_buffer_current_reg = susp->x_buffer_current;
|
||||
x_snd_ptr_reg = susp->x_snd_ptr;
|
||||
out_ptr_reg = out_ptr;
|
||||
if (n) do { /* the inner sample computation loop */
|
||||
long i; double sum;
|
||||
/* see if we've reached end of x_buffer */
|
||||
if ((x_buffer_pointer_reg + x_buf_len_reg) <= (x_buffer_current_reg + h_len_reg)) {
|
||||
/* shift x_buffer from current back to base */
|
||||
for (i = 1; i < h_len_reg; i++) {
|
||||
x_buffer_pointer_reg[i-1] = x_buffer_current_reg[i];
|
||||
}
|
||||
/* this will be incremented back to x_buffer_pointer_reg below */
|
||||
x_buffer_current_reg = x_buffer_pointer_reg - 1;
|
||||
to_copy = min(N - i, susp->x_snd_cnt);
|
||||
memcpy(X + i, susp->x_snd_ptr,
|
||||
to_copy * sizeof(*susp->x_snd_ptr));
|
||||
susp->x_snd_ptr += to_copy;
|
||||
susp->x_snd_cnt -= to_copy;
|
||||
i += to_copy;
|
||||
}
|
||||
|
||||
x_buffer_current_reg++;
|
||||
|
||||
x_buffer_current_reg[h_len_reg - 1] = (x_snd_scale_reg * *x_snd_ptr_reg++);
|
||||
|
||||
sum = 0.0;
|
||||
for (i = 0; i < h_len_reg; i++) {
|
||||
sum += x_buffer_current_reg[i] * h_buf_reg[i];
|
||||
/* zero fill to size 2N */
|
||||
memset(X + N, 0, N * sizeof(X[0]));
|
||||
/* Compute FFT of X in place */
|
||||
fftInit(susp->M);
|
||||
rffts(X, susp->M, 1);
|
||||
/* Multiply X by H (result goes into X) */
|
||||
rspectprod(X, H, X, N * 2);
|
||||
/* Compute IFFT of X in place */
|
||||
riffts(X, susp->M, 1);
|
||||
/* Shift R, zero fill, add X, all in one loop */
|
||||
for (i = 0; i < N; i++) {
|
||||
R[i] = R[i + N] + X[i];
|
||||
R[i + N] = X[i + N];
|
||||
}
|
||||
/* now N samples of R can be output */
|
||||
susp->R_current = R;
|
||||
}
|
||||
/* compute togo, the number of samples to "compute" */
|
||||
/* can't use more than what's left in R. R_current is
|
||||
the next sample of R, so what's left is N - (R - R_current) */
|
||||
R_current = susp->R_current;
|
||||
togo = min(togo, N - (R_current - R));
|
||||
|
||||
*out_ptr_reg++ = (sample_type) sum;
|
||||
} while (--n); /* inner loop */
|
||||
/* don't run past terminate time */
|
||||
if (susp->terminate_cnt != UNKNOWN &&
|
||||
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
|
||||
togo = susp->terminate_cnt - (susp->susp.current + cnt);
|
||||
if (togo == 0) break;
|
||||
}
|
||||
|
||||
susp->x_buffer_pointer = x_buffer_pointer_reg;
|
||||
susp->x_buffer_current = x_buffer_current_reg;
|
||||
/* using x_snd_ptr_reg is a bad idea on RS/6000: */
|
||||
susp->x_snd_ptr += togo;
|
||||
out_ptr += togo;
|
||||
susp_took(x_snd_cnt, togo);
|
||||
cnt += togo;
|
||||
/* don't run past logical stop time */
|
||||
if (!susp->logically_stopped &&
|
||||
susp->susp.log_stop_cnt != UNKNOWN &&
|
||||
susp->susp.log_stop_cnt <= susp->susp.current + cnt + togo) {
|
||||
togo = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
|
||||
if (togo == 0) break;
|
||||
}
|
||||
|
||||
n = togo;
|
||||
out_ptr_reg = out_ptr;
|
||||
if (n) do { /* the inner sample computation loop */
|
||||
*out_ptr_reg++ = (sample_type) *R_current++;
|
||||
} while (--n); /* inner loop */
|
||||
|
||||
/* using R_current is a bad idea on RS/6000: */
|
||||
susp->R_current += togo;
|
||||
out_ptr += togo;
|
||||
cnt += togo;
|
||||
} /* outer loop */
|
||||
|
||||
/* test for termination */
|
||||
if (togo == 0 && cnt == 0) {
|
||||
snd_list_terminate(snd_list);
|
||||
snd_list_terminate(snd_list);
|
||||
} else {
|
||||
snd_list->block_len = cnt;
|
||||
susp->susp.current += cnt;
|
||||
snd_list->block_len = cnt;
|
||||
susp->susp.current += cnt;
|
||||
}
|
||||
/* test for logical stop */
|
||||
if (susp->logically_stopped) {
|
||||
snd_list->logically_stopped = true;
|
||||
snd_list->logically_stopped = true;
|
||||
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
|
||||
susp->logically_stopped = true;
|
||||
susp->logically_stopped = true;
|
||||
}
|
||||
} /* convolve_s_fetch */
|
||||
|
||||
|
||||
void convolve_toss_fetch(susp, snd_list)
|
||||
register convolve_susp_type susp;
|
||||
snd_list_type snd_list;
|
||||
void convolve_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
|
||||
{
|
||||
convolve_susp_type susp = (convolve_susp_type) susp;
|
||||
time_type final_time = susp->susp.t0;
|
||||
long n;
|
||||
|
||||
@@ -218,36 +215,40 @@ void convolve_toss_fetch(susp, snd_list)
|
||||
/* convert to normal processing when we hit final_count */
|
||||
/* we want each signal positioned at final_time */
|
||||
n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr -
|
||||
(susp->x_snd->current - susp->x_snd_cnt));
|
||||
(susp->x_snd->current - susp->x_snd_cnt));
|
||||
susp->x_snd_ptr += n;
|
||||
susp_took(x_snd_cnt, n);
|
||||
susp->susp.fetch = susp->susp.keep_fetch;
|
||||
(*(susp->susp.fetch))(susp, snd_list);
|
||||
(*(susp->susp.fetch))(a_susp, snd_list);
|
||||
}
|
||||
|
||||
|
||||
void convolve_mark(convolve_susp_type susp)
|
||||
void convolve_mark(snd_susp_type a_susp)
|
||||
{
|
||||
convolve_susp_type susp = (convolve_susp_type) a_susp;
|
||||
sound_xlmark(susp->x_snd);
|
||||
}
|
||||
|
||||
|
||||
void convolve_free(convolve_susp_type susp)
|
||||
void convolve_free(snd_susp_type a_susp)
|
||||
{
|
||||
table_unref(susp->table);
|
||||
free(susp->x_buffer_pointer); sound_unref(susp->x_snd);
|
||||
convolve_susp_type susp = (convolve_susp_type) a_susp;
|
||||
free(susp->R);
|
||||
free(susp->X);
|
||||
free(susp->H);
|
||||
sound_unref(susp->x_snd);
|
||||
ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
|
||||
}
|
||||
|
||||
|
||||
void convolve_print_tree(convolve_susp_type susp, int n)
|
||||
void convolve_print_tree(snd_susp_type a_susp, int n)
|
||||
{
|
||||
convolve_susp_type susp = (convolve_susp_type) a_susp;
|
||||
indent(n);
|
||||
stdputstr("x_snd:");
|
||||
sound_print_tree_1(susp->x_snd, n);
|
||||
}
|
||||
|
||||
|
||||
sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
|
||||
{
|
||||
register convolve_susp_type susp;
|
||||
@@ -255,16 +256,38 @@ sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
|
||||
time_type t0 = x_snd->t0;
|
||||
sample_type scale_factor = 1.0F;
|
||||
time_type t0_min = t0;
|
||||
table_type table;
|
||||
double log_len;
|
||||
falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
|
||||
susp->table = sound_to_table(h_snd);
|
||||
susp->h_buf = susp->table->samples;
|
||||
susp->length_of_h = susp->table->length;
|
||||
susp->h_len = (long) susp->length_of_h;
|
||||
h_reverse(susp->h_buf, susp->h_len);
|
||||
susp->x_buf_len = 2 * susp->h_len;
|
||||
susp->x_buffer_pointer = calloc((2 * (susp->h_len)), sizeof(float));
|
||||
susp->x_buffer_current = susp->x_buffer_pointer;
|
||||
susp->susp.fetch = convolve_s_fetch;
|
||||
table = sound_to_table(h_snd);
|
||||
susp->h_len = table->length;
|
||||
log_len = log(table->length) / M_LN2; /* compute log-base-2(length) */
|
||||
susp->M = (int) log_len;
|
||||
if (susp->M != log_len) susp->M++; /* round up */
|
||||
susp->N = 1 << susp->M; /* size of data blocks */
|
||||
susp->M++; /* M = log2(2 * N) */
|
||||
susp->H = (sample_type *) calloc(2 * susp->N, sizeof(susp->H[0]));
|
||||
if (!susp->H) {
|
||||
xlabort("memory allocation failure in convolve");
|
||||
}
|
||||
memcpy(susp->H, table->samples, sizeof(susp->H[0]) * susp->N);
|
||||
table_unref(table); /* don't need table now */
|
||||
/* remaining N samples are already zero-filled */
|
||||
if (fftInit(susp->M)) {
|
||||
free(susp->H);
|
||||
xlabort("fft initialization error in convolve");
|
||||
}
|
||||
rffts(susp->H, susp->M, 1);
|
||||
susp->X = (sample_type *) calloc(2 * susp->N, sizeof(susp->X[0]));
|
||||
susp->R = (sample_type *) calloc(2 * susp->N, sizeof(susp->R[0]));
|
||||
if (!susp->X || !susp->R) {
|
||||
free(susp->H);
|
||||
if (susp->X) free(susp->X);
|
||||
if (susp->R) free(susp->R);
|
||||
xlabort("memory allocation failed in convolve");
|
||||
}
|
||||
susp->R_current = susp->R + susp->N;
|
||||
susp->susp.fetch = &convolve_s_fetch;
|
||||
susp->terminate_cnt = UNKNOWN;
|
||||
/* handle unequal start times, if any */
|
||||
if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);
|
||||
|
Reference in New Issue
Block a user