1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-10-10 16:43:33 +02:00

Remove some old erratta, and do a major tidy up of line endings and properties on source files

This commit is contained in:
ra
2010-01-24 13:33:28 +00:00
parent 58caf78a86
commit 6e3e8dcfff
187 changed files with 59451 additions and 59244 deletions

View File

@@ -1,458 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +1,3 @@
Files in this directory are used by GNU autoconf/automake system.
These files aren't used/needed in the Windows environment.
Files in this directory are used by GNU autoconf/automake system.
These files aren't used/needed in the Windows environment.

View File

@@ -1,159 +1,159 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Beats-per-minute (BPM) detection routine.
///
/// The beat detection algorithm works as follows:
/// - Use function 'inputSamples' to input a chunks of samples to the class for
/// analysis. It's a good idea to enter a large sound file or stream in smallish
/// chunks of around few kilosamples in order not to extinguish too much RAM memory.
/// - Input sound data is decimated to approx 500 Hz to reduce calculation burden,
/// which is basically ok as low (bass) frequencies mostly determine the beat rate.
/// Simple averaging is used for anti-alias filtering because the resulting signal
/// quality isn't of that high importance.
/// - Decimated sound data is enveloped, i.e. the amplitude shape is detected by
/// taking absolute value that's smoothed by sliding average. Signal levels that
/// are below a couple of times the general RMS amplitude level are cut away to
/// leave only notable peaks there.
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// autocorrelation function of the enveloped signal.
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// function, calculates it's precise location and converts this reading to bpm's.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: BPMDetect.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _BPMDetect_H_
#define _BPMDetect_H_
#include "STTypes.h"
#include "FIFOSampleBuffer.h"
/// Minimum allowed BPM rate. Used to restrict accepted result above a reasonable limit.
#define MIN_BPM 45
/// Maximum allowed BPM rate. Used to restrict accepted result below a reasonable limit.
#define MAX_BPM 230
/// Class for calculating BPM rate for audio data.
class BPMDetect
{
protected:
/// Auto-correlation accumulator bins.
float *xcorr;
/// Amplitude envelope sliding average approximation level accumulator
float envelopeAccu;
/// RMS volume sliding average approximation level accumulator
float RMSVolumeAccu;
/// Sample average counter.
int decimateCount;
/// Sample average accumulator for FIFO-like decimation.
soundtouch::LONG_SAMPLETYPE decimateSum;
/// Decimate sound by this coefficient to reach approx. 500 Hz.
int decimateBy;
/// Auto-correlation window length
int windowLen;
/// Number of channels (1 = mono, 2 = stereo)
int channels;
/// sample rate
int sampleRate;
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
/// the first these many correlation bins.
int windowStart;
/// FIFO-buffer for decimated processing samples.
soundtouch::FIFOSampleBuffer *buffer;
/// Initialize the class for processing.
void init(int numChannels, int sampleRate);
/// Updates auto-correlation function for given number of decimated samples that
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
/// though).
void updateXCorr(int process_samples /// How many samples are processed.
);
/// Decimates samples to approx. 500 Hz.
///
/// \return Number of output samples.
int decimate(soundtouch::SAMPLETYPE *dest, ///< Destination buffer
const soundtouch::SAMPLETYPE *src, ///< Source sample buffer
int numsamples ///< Number of source samples.
);
/// Calculates amplitude envelope for the buffer of samples.
/// Result is output to 'samples'.
void calcEnvelope(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/output data buffer
int numsamples ///< Number of samples in buffer
);
public:
/// Constructor.
BPMDetect(int numChannels, ///< Number of channels in sample data.
int sampleRate ///< Sample rate in Hz.
);
/// Destructor.
virtual ~BPMDetect();
/// Inputs a block of samples for analyzing: Envelopes the samples and then
/// updates the autocorrelation estimation. When whole song data has been input
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
/// function.
///
/// Notice that data in 'samples' array can be disrupted in processing.
void inputSamples(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
int numSamples ///< Number of samples in buffer
);
/// Analyzes the results and returns the BPM rate. Use this function to read result
/// after whole song data has been input to the class by consecutive calls of
/// 'inputSamples' function.
///
/// \return Beats-per-minute rate, or zero if detection failed.
float getBpm();
};
#endif // _BPMDetect_H_
////////////////////////////////////////////////////////////////////////////////
///
/// Beats-per-minute (BPM) detection routine.
///
/// The beat detection algorithm works as follows:
/// - Use function 'inputSamples' to input a chunks of samples to the class for
/// analysis. It's a good idea to enter a large sound file or stream in smallish
/// chunks of around few kilosamples in order not to extinguish too much RAM memory.
/// - Input sound data is decimated to approx 500 Hz to reduce calculation burden,
/// which is basically ok as low (bass) frequencies mostly determine the beat rate.
/// Simple averaging is used for anti-alias filtering because the resulting signal
/// quality isn't of that high importance.
/// - Decimated sound data is enveloped, i.e. the amplitude shape is detected by
/// taking absolute value that's smoothed by sliding average. Signal levels that
/// are below a couple of times the general RMS amplitude level are cut away to
/// leave only notable peaks there.
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// autocorrelation function of the enveloped signal.
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// function, calculates it's precise location and converts this reading to bpm's.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: BPMDetect.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _BPMDetect_H_
#define _BPMDetect_H_
#include "STTypes.h"
#include "FIFOSampleBuffer.h"
/// Minimum allowed BPM rate. Used to restrict accepted result above a reasonable limit.
#define MIN_BPM 45
/// Maximum allowed BPM rate. Used to restrict accepted result below a reasonable limit.
#define MAX_BPM 230
/// Class for calculating BPM rate for audio data.
class BPMDetect
{
protected:
/// Auto-correlation accumulator bins.
float *xcorr;
/// Amplitude envelope sliding average approximation level accumulator
float envelopeAccu;
/// RMS volume sliding average approximation level accumulator
float RMSVolumeAccu;
/// Sample average counter.
int decimateCount;
/// Sample average accumulator for FIFO-like decimation.
soundtouch::LONG_SAMPLETYPE decimateSum;
/// Decimate sound by this coefficient to reach approx. 500 Hz.
int decimateBy;
/// Auto-correlation window length
int windowLen;
/// Number of channels (1 = mono, 2 = stereo)
int channels;
/// sample rate
int sampleRate;
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
/// the first these many correlation bins.
int windowStart;
/// FIFO-buffer for decimated processing samples.
soundtouch::FIFOSampleBuffer *buffer;
/// Initialize the class for processing.
void init(int numChannels, int sampleRate);
/// Updates auto-correlation function for given number of decimated samples that
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
/// though).
void updateXCorr(int process_samples /// How many samples are processed.
);
/// Decimates samples to approx. 500 Hz.
///
/// \return Number of output samples.
int decimate(soundtouch::SAMPLETYPE *dest, ///< Destination buffer
const soundtouch::SAMPLETYPE *src, ///< Source sample buffer
int numsamples ///< Number of source samples.
);
/// Calculates amplitude envelope for the buffer of samples.
/// Result is output to 'samples'.
void calcEnvelope(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/output data buffer
int numsamples ///< Number of samples in buffer
);
public:
/// Constructor.
BPMDetect(int numChannels, ///< Number of channels in sample data.
int sampleRate ///< Sample rate in Hz.
);
/// Destructor.
virtual ~BPMDetect();
/// Inputs a block of samples for analyzing: Envelopes the samples and then
/// updates the autocorrelation estimation. When whole song data has been input
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
/// function.
///
/// Notice that data in 'samples' array can be disrupted in processing.
void inputSamples(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
int numSamples ///< Number of samples in buffer
);
/// Analyzes the results and returns the BPM rate. Use this function to read result
/// after whole song data has been input to the class by consecutive calls of
/// 'inputSamples' function.
///
/// \return Beats-per-minute rate, or zero if detection failed.
float getBpm();
};
#endif // _BPMDetect_H_

View File

@@ -1,174 +1,174 @@
////////////////////////////////////////////////////////////////////////////////
///
/// A buffer class for temporarily storaging sound samples, operates as a
/// first-in-first-out pipe.
///
/// Samples are added to the end of the sample buffer with the 'putSamples'
/// function, and are received from the beginning of the buffer by calling
/// the 'receiveSamples' function. The class automatically removes the
/// output samples from the buffer as well as grows the storage size
/// whenever necessary.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: FIFOSampleBuffer.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef FIFOSampleBuffer_H
#define FIFOSampleBuffer_H
#include "FIFOSamplePipe.h"
namespace soundtouch
{
/// Sample buffer working in FIFO (first-in-first-out) principle. The class takes
/// care of storage size adjustment and data moving during input/output operations.
///
/// Notice that in case of stereo audio, one sample is considered to consist of
/// both channel data.
class FIFOSampleBuffer : public FIFOSamplePipe
{
private:
/// Sample buffer.
SAMPLETYPE *buffer;
// Raw unaligned buffer memory. 'buffer' is made aligned by pointing it to first
// 16-byte aligned location of this buffer
SAMPLETYPE *bufferUnaligned;
/// Sample buffer size in bytes
uint sizeInBytes;
/// How many samples are currently in buffer.
uint samplesInBuffer;
/// Channels, 1=mono, 2=stereo.
uint channels;
/// Current position pointer to the buffer. This pointer is increased when samples are
/// removed from the pipe so that it's necessary to actually rewind buffer (move data)
/// only new data when is put to the pipe.
uint bufferPos;
/// Rewind the buffer by moving data from position pointed by 'bufferPos' to real
/// beginning of the buffer.
void rewind();
/// Ensures that the buffer has capacity for at least this many samples.
void ensureCapacity(const uint capacityRequirement);
/// Returns current capacity.
uint getCapacity() const;
public:
/// Constructor
FIFOSampleBuffer(uint numChannels = 2 ///< Number of channels, 1=mono, 2=stereo.
///< Default is stereo.
);
/// destructor
~FIFOSampleBuffer();
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() const;
/// Returns a pointer to the end of the used part of the sample buffer (i.e.
/// where the new samples are to be inserted). This function may be used for
/// inserting new samples into the sample buffer directly. Please be careful
/// not corrupt the book-keeping!
///
/// When using this function as means for inserting new samples, also remember
/// to increase the sample count afterwards, by calling the
/// 'putSamples(numSamples)' function.
SAMPLETYPE *ptrEnd(
uint slackCapacity ///< How much free capacity (in samples) there _at least_
///< should be so that the caller can succesfully insert the
///< desired samples to the buffer. If necessary, the function
///< grows the buffer size to comply with this requirement.
);
/// Adds 'numSamples' pcs of samples from the 'samples' memory position to
/// the sample buffer.
virtual void putSamples(const SAMPLETYPE *samples, ///< Pointer to samples.
uint numSamples ///< Number of samples to insert.
);
/// Adjusts the book-keeping to increase number of samples in the buffer without
/// copying any actual samples.
///
/// This function is used to update the number of samples in the sample buffer
/// when accessing the buffer directly with 'ptrEnd' function. Please be
/// careful though!
virtual void putSamples(uint numSamples ///< Number of samples been inserted.
);
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
virtual uint receiveSamples(SAMPLETYPE *output, ///< Buffer where to copy output samples.
uint maxSamples ///< How many samples to receive at max.
);
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
);
/// Returns number of samples currently available.
virtual uint numSamples() const;
/// Sets number of channels, 1 = mono, 2 = stereo.
void setChannels(uint numChannels);
/// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const;
/// Clears all the samples.
virtual void clear();
};
}
#endif
////////////////////////////////////////////////////////////////////////////////
///
/// A buffer class for temporarily storaging sound samples, operates as a
/// first-in-first-out pipe.
///
/// Samples are added to the end of the sample buffer with the 'putSamples'
/// function, and are received from the beginning of the buffer by calling
/// the 'receiveSamples' function. The class automatically removes the
/// output samples from the buffer as well as grows the storage size
/// whenever necessary.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: FIFOSampleBuffer.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef FIFOSampleBuffer_H
#define FIFOSampleBuffer_H
#include "FIFOSamplePipe.h"
namespace soundtouch
{
/// Sample buffer working in FIFO (first-in-first-out) principle. The class takes
/// care of storage size adjustment and data moving during input/output operations.
///
/// Notice that in case of stereo audio, one sample is considered to consist of
/// both channel data.
class FIFOSampleBuffer : public FIFOSamplePipe
{
private:
/// Sample buffer.
SAMPLETYPE *buffer;
// Raw unaligned buffer memory. 'buffer' is made aligned by pointing it to first
// 16-byte aligned location of this buffer
SAMPLETYPE *bufferUnaligned;
/// Sample buffer size in bytes
uint sizeInBytes;
/// How many samples are currently in buffer.
uint samplesInBuffer;
/// Channels, 1=mono, 2=stereo.
uint channels;
/// Current position pointer to the buffer. This pointer is increased when samples are
/// removed from the pipe so that it's necessary to actually rewind buffer (move data)
/// only new data when is put to the pipe.
uint bufferPos;
/// Rewind the buffer by moving data from position pointed by 'bufferPos' to real
/// beginning of the buffer.
void rewind();
/// Ensures that the buffer has capacity for at least this many samples.
void ensureCapacity(const uint capacityRequirement);
/// Returns current capacity.
uint getCapacity() const;
public:
/// Constructor
FIFOSampleBuffer(uint numChannels = 2 ///< Number of channels, 1=mono, 2=stereo.
///< Default is stereo.
);
/// destructor
~FIFOSampleBuffer();
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() const;
/// Returns a pointer to the end of the used part of the sample buffer (i.e.
/// where the new samples are to be inserted). This function may be used for
/// inserting new samples into the sample buffer directly. Please be careful
/// not corrupt the book-keeping!
///
/// When using this function as means for inserting new samples, also remember
/// to increase the sample count afterwards, by calling the
/// 'putSamples(numSamples)' function.
SAMPLETYPE *ptrEnd(
uint slackCapacity ///< How much free capacity (in samples) there _at least_
///< should be so that the caller can succesfully insert the
///< desired samples to the buffer. If necessary, the function
///< grows the buffer size to comply with this requirement.
);
/// Adds 'numSamples' pcs of samples from the 'samples' memory position to
/// the sample buffer.
virtual void putSamples(const SAMPLETYPE *samples, ///< Pointer to samples.
uint numSamples ///< Number of samples to insert.
);
/// Adjusts the book-keeping to increase number of samples in the buffer without
/// copying any actual samples.
///
/// This function is used to update the number of samples in the sample buffer
/// when accessing the buffer directly with 'ptrEnd' function. Please be
/// careful though!
virtual void putSamples(uint numSamples ///< Number of samples been inserted.
);
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
virtual uint receiveSamples(SAMPLETYPE *output, ///< Buffer where to copy output samples.
uint maxSamples ///< How many samples to receive at max.
);
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
);
/// Returns number of samples currently available.
virtual uint numSamples() const;
/// Sets number of channels, 1 = mono, 2 = stereo.
void setChannels(uint numChannels);
/// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const;
/// Clears all the samples.
virtual void clear();
};
}
#endif

View File

@@ -1,217 +1,217 @@
////////////////////////////////////////////////////////////////////////////////
///
/// 'FIFOSamplePipe' : An abstract base class for classes that manipulate sound
/// samples by operating like a first-in-first-out pipe: New samples are fed
/// into one end of the pipe with the 'putSamples' function, and the processed
/// samples are received from the other end with the 'receiveSamples' function.
///
/// 'FIFOProcessor' : A base class for classes the do signal processing with
/// the samples while operating like a first-in-first-out pipe. When samples
/// are input with the 'putSamples' function, the class processes them
/// and moves the processed samples to the given 'output' pipe object, which
/// may be either another processing stage, or a fifo sample buffer object.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: FIFOSamplePipe.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef FIFOSamplePipe_H
#define FIFOSamplePipe_H
#include <assert.h>
#include <stdlib.h>
#include "STTypes.h"
namespace soundtouch
{
/// Abstract base class for FIFO (first-in-first-out) sample processing classes.
class FIFOSamplePipe
{
public:
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() const = 0;
/// Adds 'numSamples' pcs of samples from the 'samples' memory position to
/// the sample buffer.
virtual void putSamples(const SAMPLETYPE *samples, ///< Pointer to samples.
uint numSamples ///< Number of samples to insert.
) = 0;
// Moves samples from the 'other' pipe instance to this instance.
void moveSamples(FIFOSamplePipe &other ///< Other pipe instance where from the receive the data.
)
{
int oNumSamples = other.numSamples();
putSamples(other.ptrBegin(), oNumSamples);
other.receiveSamples(oNumSamples);
};
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
virtual uint receiveSamples(SAMPLETYPE *output, ///< Buffer where to copy output samples.
uint maxSamples ///< How many samples to receive at max.
) = 0;
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
) = 0;
/// Returns number of samples currently available.
virtual uint numSamples() const = 0;
// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const = 0;
/// Clears all the samples.
virtual void clear() = 0;
};
/// Base-class for sound processing routines working in FIFO principle. With this base
/// class it's easy to implement sound processing stages that can be chained together,
/// so that samples that are fed into beginning of the pipe automatically go through
/// all the processing stages.
///
/// When samples are input to this class, they're first processed and then put to
/// the FIFO pipe that's defined as output of this class. This output pipe can be
/// either other processing stage or a FIFO sample buffer.
class FIFOProcessor :public FIFOSamplePipe
{
protected:
/// Internal pipe where processed samples are put.
FIFOSamplePipe *output;
/// Sets output pipe.
void setOutPipe(FIFOSamplePipe *pOutput)
{
assert(output == NULL);
assert(pOutput != NULL);
output = pOutput;
}
/// Constructor. Doesn't define output pipe; it has to be set be
/// 'setOutPipe' function.
FIFOProcessor()
{
output = NULL;
}
/// Constructor. Configures output pipe.
FIFOProcessor(FIFOSamplePipe *pOutput ///< Output pipe.
)
{
output = pOutput;
}
/// Destructor.
virtual ~FIFOProcessor()
{
}
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() const
{
return output->ptrBegin();
}
public:
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
virtual uint receiveSamples(SAMPLETYPE *outBuffer, ///< Buffer where to copy output samples.
uint maxSamples ///< How many samples to receive at max.
)
{
return output->receiveSamples(outBuffer, maxSamples);
}
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
)
{
return output->receiveSamples(maxSamples);
}
/// Returns number of samples currently available.
virtual uint numSamples() const
{
return output->numSamples();
}
/// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const
{
return output->isEmpty();
}
};
}
#endif
////////////////////////////////////////////////////////////////////////////////
///
/// 'FIFOSamplePipe' : An abstract base class for classes that manipulate sound
/// samples by operating like a first-in-first-out pipe: New samples are fed
/// into one end of the pipe with the 'putSamples' function, and the processed
/// samples are received from the other end with the 'receiveSamples' function.
///
/// 'FIFOProcessor' : A base class for classes the do signal processing with
/// the samples while operating like a first-in-first-out pipe. When samples
/// are input with the 'putSamples' function, the class processes them
/// and moves the processed samples to the given 'output' pipe object, which
/// may be either another processing stage, or a fifo sample buffer object.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: FIFOSamplePipe.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef FIFOSamplePipe_H
#define FIFOSamplePipe_H
#include <assert.h>
#include <stdlib.h>
#include "STTypes.h"
namespace soundtouch
{
/// Abstract base class for FIFO (first-in-first-out) sample processing classes.
class FIFOSamplePipe
{
public:
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() const = 0;
/// Adds 'numSamples' pcs of samples from the 'samples' memory position to
/// the sample buffer.
virtual void putSamples(const SAMPLETYPE *samples, ///< Pointer to samples.
uint numSamples ///< Number of samples to insert.
) = 0;
// Moves samples from the 'other' pipe instance to this instance.
void moveSamples(FIFOSamplePipe &other ///< Other pipe instance where from the receive the data.
)
{
int oNumSamples = other.numSamples();
putSamples(other.ptrBegin(), oNumSamples);
other.receiveSamples(oNumSamples);
};
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
virtual uint receiveSamples(SAMPLETYPE *output, ///< Buffer where to copy output samples.
uint maxSamples ///< How many samples to receive at max.
) = 0;
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
) = 0;
/// Returns number of samples currently available.
virtual uint numSamples() const = 0;
// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const = 0;
/// Clears all the samples.
virtual void clear() = 0;
};
/// Base-class for sound processing routines working in FIFO principle. With this base
/// class it's easy to implement sound processing stages that can be chained together,
/// so that samples that are fed into beginning of the pipe automatically go through
/// all the processing stages.
///
/// When samples are input to this class, they're first processed and then put to
/// the FIFO pipe that's defined as output of this class. This output pipe can be
/// either other processing stage or a FIFO sample buffer.
class FIFOProcessor :public FIFOSamplePipe
{
protected:
/// Internal pipe where processed samples are put.
FIFOSamplePipe *output;
/// Sets output pipe.
void setOutPipe(FIFOSamplePipe *pOutput)
{
assert(output == NULL);
assert(pOutput != NULL);
output = pOutput;
}
/// Constructor. Doesn't define output pipe; it has to be set be
/// 'setOutPipe' function.
FIFOProcessor()
{
output = NULL;
}
/// Constructor. Configures output pipe.
FIFOProcessor(FIFOSamplePipe *pOutput ///< Output pipe.
)
{
output = pOutput;
}
/// Destructor.
virtual ~FIFOProcessor()
{
}
/// Returns a pointer to the beginning of the output samples.
/// This function is provided for accessing the output samples directly.
/// Please be careful for not to corrupt the book-keeping!
///
/// When using this function to output samples, also remember to 'remove' the
/// output samples from the buffer by calling the
/// 'receiveSamples(numSamples)' function
virtual SAMPLETYPE *ptrBegin() const
{
return output->ptrBegin();
}
public:
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
virtual uint receiveSamples(SAMPLETYPE *outBuffer, ///< Buffer where to copy output samples.
uint maxSamples ///< How many samples to receive at max.
)
{
return output->receiveSamples(outBuffer, maxSamples);
}
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
)
{
return output->receiveSamples(maxSamples);
}
/// Returns number of samples currently available.
virtual uint numSamples() const
{
return output->numSamples();
}
/// Returns nonzero if there aren't any samples available for outputting.
virtual int isEmpty() const
{
return output->isEmpty();
}
};
}
#endif

View File

@@ -1,143 +1,143 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Common type definitions for SoundTouch audio processing library.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: STTypes.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef STTypes_H
#define STTypes_H
typedef unsigned int uint;
typedef unsigned long ulong;
#ifdef __GNUC__
// In GCC, include soundtouch_config.h made by config scritps
#include "soundtouch_config.h"
#endif
#ifndef _WINDEF_
// if these aren't defined already by Windows headers, define now
typedef int BOOL;
#define FALSE 0
#define TRUE 1
#endif // _WINDEF_
namespace soundtouch
{
/// Activate these undef's to overrule the possible sampletype
/// setting inherited from some other header file:
//#undef INTEGER_SAMPLES
//#undef FLOAT_SAMPLES
#if !(INTEGER_SAMPLES || FLOAT_SAMPLES)
/// Choose either 32bit floating point or 16bit integer sampletype
/// by choosing one of the following defines, unless this selection
/// has already been done in some other file.
////
/// Notes:
/// - In Windows environment, choose the sample format with the
/// following defines.
/// - In GNU environment, the floating point samples are used by
/// default, but integer samples can be chosen by giving the
/// following switch to the configure script:
/// ./configure --enable-integer-samples
/// However, if you still prefer to select the sample format here
/// also in GNU environment, then please #undef the INTEGER_SAMPLE
/// and FLOAT_SAMPLE defines first as in comments above.
//#define INTEGER_SAMPLES 1 //< 16bit integer samples
#define FLOAT_SAMPLES 1 //< 32bit float samples
#endif
/// Define this to allow CPU-specific assembler optimizations. Notice that
/// having this enabled on non-x86 platforms doesn't matter; the compiler can
/// drop unsupported extensions on different platforms automatically.
/// However, if you're having difficulties getting the optimized routines
/// compiled with your compler (e.g. some gcc compiler versions may be picky),
/// you may wish to disable the optimizations to make the library compile.
#define ALLOW_OPTIMIZATIONS 1
// If defined, allows the SIMD-optimized routines to take minor shortcuts
// for improved performance. Undefine to require faithfully similar SIMD
// calculations as in normal C implementation.
#define ALLOW_NONEXACT_SIMD_OPTIMIZATION 1
#ifdef INTEGER_SAMPLES
// 16bit integer sample type
typedef short SAMPLETYPE;
// data type for sample accumulation: Use 32bit integer to prevent overflows
typedef long LONG_SAMPLETYPE;
#ifdef FLOAT_SAMPLES
// check that only one sample type is defined
#error "conflicting sample types defined"
#endif // FLOAT_SAMPLES
#ifdef ALLOW_OPTIMIZATIONS
#if (WIN32 || __i386__ || __x86_64__)
// Allow MMX optimizations
#define ALLOW_MMX 1
#endif
#endif
#else
// floating point samples
typedef float SAMPLETYPE;
// data type for sample accumulation: Use double to utilize full precision.
typedef double LONG_SAMPLETYPE;
#ifdef ALLOW_OPTIMIZATIONS
// Allow 3DNow! and SSE optimizations
#if WIN32
#define ALLOW_3DNOW 1
#endif
#if (WIN32 || __i386__ || __x86_64__)
#define ALLOW_SSE 1
#endif
#endif
#endif // INTEGER_SAMPLES
};
#endif
////////////////////////////////////////////////////////////////////////////////
///
/// Common type definitions for SoundTouch audio processing library.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: STTypes.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef STTypes_H
#define STTypes_H
typedef unsigned int uint;
typedef unsigned long ulong;
#ifdef __GNUC__
// In GCC, include soundtouch_config.h made by config scritps
#include "soundtouch_config.h"
#endif
#ifndef _WINDEF_
// if these aren't defined already by Windows headers, define now
typedef int BOOL;
#define FALSE 0
#define TRUE 1
#endif // _WINDEF_
namespace soundtouch
{
/// Activate these undef's to overrule the possible sampletype
/// setting inherited from some other header file:
//#undef INTEGER_SAMPLES
//#undef FLOAT_SAMPLES
#if !(INTEGER_SAMPLES || FLOAT_SAMPLES)
/// Choose either 32bit floating point or 16bit integer sampletype
/// by choosing one of the following defines, unless this selection
/// has already been done in some other file.
////
/// Notes:
/// - In Windows environment, choose the sample format with the
/// following defines.
/// - In GNU environment, the floating point samples are used by
/// default, but integer samples can be chosen by giving the
/// following switch to the configure script:
/// ./configure --enable-integer-samples
/// However, if you still prefer to select the sample format here
/// also in GNU environment, then please #undef the INTEGER_SAMPLE
/// and FLOAT_SAMPLE defines first as in comments above.
//#define INTEGER_SAMPLES 1 //< 16bit integer samples
#define FLOAT_SAMPLES 1 //< 32bit float samples
#endif
/// Define this to allow CPU-specific assembler optimizations. Notice that
/// having this enabled on non-x86 platforms doesn't matter; the compiler can
/// drop unsupported extensions on different platforms automatically.
/// However, if you're having difficulties getting the optimized routines
/// compiled with your compler (e.g. some gcc compiler versions may be picky),
/// you may wish to disable the optimizations to make the library compile.
#define ALLOW_OPTIMIZATIONS 1
// If defined, allows the SIMD-optimized routines to take minor shortcuts
// for improved performance. Undefine to require faithfully similar SIMD
// calculations as in normal C implementation.
#define ALLOW_NONEXACT_SIMD_OPTIMIZATION 1
#ifdef INTEGER_SAMPLES
// 16bit integer sample type
typedef short SAMPLETYPE;
// data type for sample accumulation: Use 32bit integer to prevent overflows
typedef long LONG_SAMPLETYPE;
#ifdef FLOAT_SAMPLES
// check that only one sample type is defined
#error "conflicting sample types defined"
#endif // FLOAT_SAMPLES
#ifdef ALLOW_OPTIMIZATIONS
#if (WIN32 || __i386__ || __x86_64__)
// Allow MMX optimizations
#define ALLOW_MMX 1
#endif
#endif
#else
// floating point samples
typedef float SAMPLETYPE;
// data type for sample accumulation: Use double to utilize full precision.
typedef double LONG_SAMPLETYPE;
#ifdef ALLOW_OPTIMIZATIONS
// Allow 3DNow! and SSE optimizations
#if WIN32
#define ALLOW_3DNOW 1
#endif
#if (WIN32 || __i386__ || __x86_64__)
#define ALLOW_SSE 1
#endif
#endif
#endif // INTEGER_SAMPLES
};
#endif

View File

@@ -1,252 +1,252 @@
//////////////////////////////////////////////////////////////////////////////
///
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
///
/// Notes:
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// desired tempo/pitch/rate settings with the corresponding functions.
///
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// samples that are to be processed are fed into one of the pipe by calling
/// function 'putSamples', while the ready processed samples can be read
/// from the other end of the pipeline with function 'receiveSamples'.
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
/// processing, then they carry out the processing step and consequently
/// make the processed samples available for outputting.
///
/// - For the above reason, the processing routines introduce a certain
/// 'latency' between the input and output, so that the samples input to
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// relationship with the amount of previously input samples.
///
/// - The tempo/pitch/rate control parameters can be altered during processing.
/// Please notice though that they aren't currently protected by semaphores,
/// so in multi-thread application external semaphore protection may be
/// required.
///
/// - This class utilizes classes 'TDStretch' for tempo change (without modifying
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// 'pitch' (change pitch but maintain tempo) is produced by a combination of
/// combining the two other controls.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: SoundTouch.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef SoundTouch_H
#define SoundTouch_H
#include "FIFOSamplePipe.h"
#include "STTypes.h"
namespace soundtouch
{
/// Soundtouch library version string
#define SOUNDTOUCH_VERSION "1.3.1"
/// SoundTouch library version id
#define SOUNDTOUCH_VERSION_ID 010301
//
// Available setting IDs for the 'setSetting' & 'get_setting' functions:
/// Enable/disable anti-alias filter in pitch transposer (0 = disable)
#define SETTING_USE_AA_FILTER 0
/// Pitch transposer anti-alias filter length (8 .. 128 taps, default = 32)
#define SETTING_AA_FILTER_LENGTH 1
/// Enable/disable quick seeking algorithm in tempo changer routine
/// (enabling quick seeking lowers CPU utilization but causes a minor sound
/// quality compromising)
#define SETTING_USE_QUICKSEEK 2
/// Time-stretch algorithm single processing sequence length in milliseconds. This determines
/// to how long sequences the original sound is chopped in the time-stretch algorithm.
/// See "STTypes.h" or README for more information.
#define SETTING_SEQUENCE_MS 3
/// Time-stretch algorithm seeking window length in milliseconds for algorithm that finds the
/// best possible overlapping location. This determines from how wide window the algorithm
/// may look for an optimal joining location when mixing the sound sequences back together.
/// See "STTypes.h" or README for more information.
#define SETTING_SEEKWINDOW_MS 4
/// Time-stretch algorithm overlap length in milliseconds. When the chopped sound sequences
/// are mixed back together, to form a continuous sound stream, this parameter defines over
/// how long period the two consecutive sequences are let to overlap each other.
/// See "STTypes.h" or README for more information.
#define SETTING_OVERLAP_MS 5
class SoundTouch : public FIFOProcessor
{
private:
/// Rate transposer class instance
class RateTransposer *pRateTransposer;
/// Time-stretch class instance
class TDStretch *pTDStretch;
/// Virtual pitch parameter. Effective rate & tempo are calculated from these parameters.
float virtualRate;
/// Virtual pitch parameter. Effective rate & tempo are calculated from these parameters.
float virtualTempo;
/// Virtual pitch parameter. Effective rate & tempo are calculated from these parameters.
float virtualPitch;
/// Flag: Has sample rate been set?
BOOL bSrateSet;
/// Calculates effective rate & tempo valuescfrom 'virtualRate', 'virtualTempo' and
/// 'virtualPitch' parameters.
void calcEffectiveRateAndTempo();
protected :
/// Number of channels
uint channels;
/// Effective 'rate' value calculated from 'virtualRate', 'virtualTempo' and 'virtualPitch'
float rate;
/// Effective 'tempo' value calculated from 'virtualRate', 'virtualTempo' and 'virtualPitch'
float tempo;
public:
SoundTouch();
virtual ~SoundTouch();
/// Get SoundTouch library version string
static const char *getVersionString();
/// Get SoundTouch library version Id
static uint getVersionId();
/// Sets new rate control value. Normal rate = 1.0, smaller values
/// represent slower rate, larger faster rates.
void setRate(float newRate);
/// Sets new tempo control value. Normal tempo = 1.0, smaller values
/// represent slower tempo, larger faster tempo.
void setTempo(float newTempo);
/// Sets new rate control value as a difference in percents compared
/// to the original rate (-50 .. +100 %)
void setRateChange(float newRate);
/// Sets new tempo control value as a difference in percents compared
/// to the original tempo (-50 .. +100 %)
void setTempoChange(float newTempo);
/// Sets new pitch control value. Original pitch = 1.0, smaller values
/// represent lower pitches, larger values higher pitch.
void setPitch(float newPitch);
/// Sets pitch change in octaves compared to the original pitch
/// (-1.00 .. +1.00)
void setPitchOctaves(float newPitch);
/// Sets pitch change in semi-tones compared to the original pitch
/// (-12 .. +12)
void setPitchSemiTones(int newPitch);
void setPitchSemiTones(float newPitch);
/// Sets the number of channels, 1 = mono, 2 = stereo
void setChannels(uint numChannels);
/// Sets sample rate.
void setSampleRate(uint srate);
/// Flushes the last samples from the processing pipeline to the output.
/// Clears also the internal processing buffers.
//
/// Note: This function is meant for extracting the last samples of a sound
/// stream. This function may introduce additional blank samples in the end
/// of the sound stream, and thus it's not recommended to call this function
/// in the middle of a sound stream.
void flush();
/// Adds 'numSamples' pcs of samples from the 'samples' memory position into
/// the input of the object. Notice that sample rate _has_to_ be set before
/// calling this function, otherwise throws a runtime_error exception.
virtual void putSamples(
const SAMPLETYPE *samples, ///< Pointer to sample buffer.
uint numSamples ///< Number of samples in buffer. Notice
///< that in case of stereo-sound a single sample
///< contains data for both channels.
);
/// Clears all the samples in the object's output and internal processing
/// buffers.
virtual void clear();
/// Changes a setting controlling the processing system behaviour. See the
/// 'SETTING_...' defines for available setting ID's.
///
/// \return 'TRUE' if the setting was succesfully changed
BOOL setSetting(uint settingId, ///< Setting ID number. see SETTING_... defines.
uint value ///< New setting value.
);
/// Reads a setting controlling the processing system behaviour. See the
/// 'SETTING_...' defines for available setting ID's.
///
/// \return the setting value.
uint getSetting(uint settingId ///< Setting ID number, see SETTING_... defines.
) const;
/// Returns number of samples currently unprocessed.
virtual uint numUnprocessedSamples() const;
/// Other handy functions that are implemented in the ancestor classes (see
/// classes 'FIFOProcessor' and 'FIFOSamplePipe')
///
/// - receiveSamples() : Use this function to receive 'ready' processed samples from SoundTouch.
/// - numSamples() : Get number of 'ready' samples that can be received with
/// function 'receiveSamples()'
/// - isEmpty() : Returns nonzero if there aren't any 'ready' samples.
/// - clear() : Clears all samples from ready/processing buffers.
};
}
#endif
//////////////////////////////////////////////////////////////////////////////
///
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
///
/// Notes:
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// desired tempo/pitch/rate settings with the corresponding functions.
///
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// samples that are to be processed are fed into one of the pipe by calling
/// function 'putSamples', while the ready processed samples can be read
/// from the other end of the pipeline with function 'receiveSamples'.
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
/// processing, then they carry out the processing step and consequently
/// make the processed samples available for outputting.
///
/// - For the above reason, the processing routines introduce a certain
/// 'latency' between the input and output, so that the samples input to
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// relationship with the amount of previously input samples.
///
/// - The tempo/pitch/rate control parameters can be altered during processing.
/// Please notice though that they aren't currently protected by semaphores,
/// so in multi-thread application external semaphore protection may be
/// required.
///
/// - This class utilizes classes 'TDStretch' for tempo change (without modifying
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// 'pitch' (change pitch but maintain tempo) is produced by a combination of
/// combining the two other controls.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:39:15 $
// File revision : $Revision: 1.2 $
//
// $Id: SoundTouch.h,v 1.2 2006-09-18 07:39:15 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef SoundTouch_H
#define SoundTouch_H
#include "FIFOSamplePipe.h"
#include "STTypes.h"
namespace soundtouch
{
/// Soundtouch library version string
#define SOUNDTOUCH_VERSION "1.3.1"
/// SoundTouch library version id
#define SOUNDTOUCH_VERSION_ID 010301
//
// Available setting IDs for the 'setSetting' & 'get_setting' functions:
/// Enable/disable anti-alias filter in pitch transposer (0 = disable)
#define SETTING_USE_AA_FILTER 0
/// Pitch transposer anti-alias filter length (8 .. 128 taps, default = 32)
#define SETTING_AA_FILTER_LENGTH 1
/// Enable/disable quick seeking algorithm in tempo changer routine
/// (enabling quick seeking lowers CPU utilization but causes a minor sound
/// quality compromising)
#define SETTING_USE_QUICKSEEK 2
/// Time-stretch algorithm single processing sequence length in milliseconds. This determines
/// to how long sequences the original sound is chopped in the time-stretch algorithm.
/// See "STTypes.h" or README for more information.
#define SETTING_SEQUENCE_MS 3
/// Time-stretch algorithm seeking window length in milliseconds for algorithm that finds the
/// best possible overlapping location. This determines from how wide window the algorithm
/// may look for an optimal joining location when mixing the sound sequences back together.
/// See "STTypes.h" or README for more information.
#define SETTING_SEEKWINDOW_MS 4
/// Time-stretch algorithm overlap length in milliseconds. When the chopped sound sequences
/// are mixed back together, to form a continuous sound stream, this parameter defines over
/// how long period the two consecutive sequences are let to overlap each other.
/// See "STTypes.h" or README for more information.
#define SETTING_OVERLAP_MS 5
class SoundTouch : public FIFOProcessor
{
private:
/// Rate transposer class instance
class RateTransposer *pRateTransposer;
/// Time-stretch class instance
class TDStretch *pTDStretch;
/// Virtual pitch parameter. Effective rate & tempo are calculated from these parameters.
float virtualRate;
/// Virtual pitch parameter. Effective rate & tempo are calculated from these parameters.
float virtualTempo;
/// Virtual pitch parameter. Effective rate & tempo are calculated from these parameters.
float virtualPitch;
/// Flag: Has sample rate been set?
BOOL bSrateSet;
/// Calculates effective rate & tempo valuescfrom 'virtualRate', 'virtualTempo' and
/// 'virtualPitch' parameters.
void calcEffectiveRateAndTempo();
protected :
/// Number of channels
uint channels;
/// Effective 'rate' value calculated from 'virtualRate', 'virtualTempo' and 'virtualPitch'
float rate;
/// Effective 'tempo' value calculated from 'virtualRate', 'virtualTempo' and 'virtualPitch'
float tempo;
public:
SoundTouch();
virtual ~SoundTouch();
/// Get SoundTouch library version string
static const char *getVersionString();
/// Get SoundTouch library version Id
static uint getVersionId();
/// Sets new rate control value. Normal rate = 1.0, smaller values
/// represent slower rate, larger faster rates.
void setRate(float newRate);
/// Sets new tempo control value. Normal tempo = 1.0, smaller values
/// represent slower tempo, larger faster tempo.
void setTempo(float newTempo);
/// Sets new rate control value as a difference in percents compared
/// to the original rate (-50 .. +100 %)
void setRateChange(float newRate);
/// Sets new tempo control value as a difference in percents compared
/// to the original tempo (-50 .. +100 %)
void setTempoChange(float newTempo);
/// Sets new pitch control value. Original pitch = 1.0, smaller values
/// represent lower pitches, larger values higher pitch.
void setPitch(float newPitch);
/// Sets pitch change in octaves compared to the original pitch
/// (-1.00 .. +1.00)
void setPitchOctaves(float newPitch);
/// Sets pitch change in semi-tones compared to the original pitch
/// (-12 .. +12)
void setPitchSemiTones(int newPitch);
void setPitchSemiTones(float newPitch);
/// Sets the number of channels, 1 = mono, 2 = stereo
void setChannels(uint numChannels);
/// Sets sample rate.
void setSampleRate(uint srate);
/// Flushes the last samples from the processing pipeline to the output.
/// Clears also the internal processing buffers.
//
/// Note: This function is meant for extracting the last samples of a sound
/// stream. This function may introduce additional blank samples in the end
/// of the sound stream, and thus it's not recommended to call this function
/// in the middle of a sound stream.
void flush();
/// Adds 'numSamples' pcs of samples from the 'samples' memory position into
/// the input of the object. Notice that sample rate _has_to_ be set before
/// calling this function, otherwise throws a runtime_error exception.
virtual void putSamples(
const SAMPLETYPE *samples, ///< Pointer to sample buffer.
uint numSamples ///< Number of samples in buffer. Notice
///< that in case of stereo-sound a single sample
///< contains data for both channels.
);
/// Clears all the samples in the object's output and internal processing
/// buffers.
virtual void clear();
/// Changes a setting controlling the processing system behaviour. See the
/// 'SETTING_...' defines for available setting ID's.
///
/// \return 'TRUE' if the setting was succesfully changed
BOOL setSetting(uint settingId, ///< Setting ID number. see SETTING_... defines.
uint value ///< New setting value.
);
/// Reads a setting controlling the processing system behaviour. See the
/// 'SETTING_...' defines for available setting ID's.
///
/// \return the setting value.
uint getSetting(uint settingId ///< Setting ID number, see SETTING_... defines.
) const;
/// Returns number of samples currently unprocessed.
virtual uint numUnprocessedSamples() const;
/// Other handy functions that are implemented in the ancestor classes (see
/// classes 'FIFOProcessor' and 'FIFOSamplePipe')
///
/// - receiveSamples() : Use this function to receive 'ready' processed samples from SoundTouch.
/// - numSamples() : Get number of 'ready' samples that can be received with
/// function 'receiveSamples()'
/// - isEmpty() : Returns nonzero if there aren't any 'ready' samples.
/// - clear() : Clears all samples from ready/processing buffers.
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,138 +1,138 @@
////////////////////////////////////////////////////////////////////////////////
///
/// gcc version of the x86 CPU detect routine.
///
/// This file is to be compiled on any platform with the GNU C compiler.
/// Compiler. Please see 'cpu_detect_x86_win.cpp' for the x86 Windows version
/// of this file.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:42 $
// File revision : $Revision: 1.3 $
//
// $Id: cpu_detect_x86_gcc.cpp,v 1.3 2006-09-18 07:31:42 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <string>
#include "cpu_detect.h"
#ifndef __GNUC__
#error wrong platform - this source code file is for the GNU C compiler.
#endif
using namespace std;
#include <stdio.h>
//////////////////////////////////////////////////////////////////////////////
//
// processor instructions extension detection routines
//
//////////////////////////////////////////////////////////////////////////////
// Flag variable indicating whick ISA extensions are disabled (for debugging)
static uint _dwDisabledISA = 0x00; // 0xffffffff; //<- use this to disable all extensions
// Disables given set of instruction extensions. See SUPPORT_... defines.
void disableExtensions(uint dwDisableMask)
{
_dwDisabledISA = dwDisableMask;
}
/// Checks which instruction set extensions are supported by the CPU.
uint detectCPUextensions(void)
{
#ifndef __i386__
return 0; // always disable extensions on non-x86 platforms.
#else
uint res = 0;
if (_dwDisabledISA == 0xffffffff) return 0;
asm volatile(
"\n\txor %%esi, %%esi" // clear %%esi = result register
// check if 'cpuid' instructions is available by toggling eflags bit 21
"\n\tpushf" // save eflags to stack
"\n\tpop %%eax" // load eax from stack (with eflags)
"\n\tmovl %%eax, %%ecx" // save the original eflags values to ecx
"\n\txor $0x00200000, %%eax" // toggle bit 21
"\n\tpush %%eax" // store toggled eflags to stack
"\n\tpopf" // load eflags from stack
"\n\tpushf" // save updated eflags to stack
"\n\tpop %%eax" // load from stack
"\n\txor %%edx, %%edx" // clear edx for defaulting no mmx
"\n\tcmp %%ecx, %%eax" // compare to original eflags values
"\n\tjz end" // jumps to 'end' if cpuid not present
// cpuid instruction available, test for presence of mmx instructions
"\n\tmovl $1, %%eax"
"\n\tcpuid"
// movl $0x00800000, %edx // force enable MMX
"\n\ttest $0x00800000, %%edx"
"\n\tjz end" // branch if MMX not available
"\n\tor $0x01, %%esi" // otherwise add MMX support bit
"\n\ttest $0x02000000, %%edx"
"\n\tjz test3DNow" // branch if SSE not available
"\n\tor $0x08, %%esi" // otherwise add SSE support bit
"\n\ttest3DNow:"
// test for precense of AMD extensions
"\n\tmov $0x80000000, %%eax"
"\n\tcpuid"
"\n\tcmp $0x80000000, %%eax"
"\n\tjbe end" // branch if no AMD extensions detected
// test for precense of 3DNow! extension
"\n\tmov $0x80000001, %%eax"
"\n\tcpuid"
"\n\ttest $0x80000000, %%edx"
"\n\tjz end" // branch if 3DNow! not detected
"\n\tor $0x02, %%esi" // otherwise add 3DNow support bit
"\n\tend:"
"\n\tmov %%esi, %0"
: "=r" (res)
: /* no inputs */
: "%edx", "%eax", "%ecx", "%esi" );
return res & ~_dwDisabledISA;
#endif
}
////////////////////////////////////////////////////////////////////////////////
///
/// gcc version of the x86 CPU detect routine.
///
/// This file is to be compiled on any platform with the GNU C compiler.
/// Compiler. Please see 'cpu_detect_x86_win.cpp' for the x86 Windows version
/// of this file.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:42 $
// File revision : $Revision: 1.3 $
//
// $Id: cpu_detect_x86_gcc.cpp,v 1.3 2006-09-18 07:31:42 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <string>
#include "cpu_detect.h"
#ifndef __GNUC__
#error wrong platform - this source code file is for the GNU C compiler.
#endif
using namespace std;
#include <stdio.h>
//////////////////////////////////////////////////////////////////////////////
//
// processor instructions extension detection routines
//
//////////////////////////////////////////////////////////////////////////////
// Flag variable indicating whick ISA extensions are disabled (for debugging)
static uint _dwDisabledISA = 0x00; // 0xffffffff; //<- use this to disable all extensions
// Disables given set of instruction extensions. See SUPPORT_... defines.
void disableExtensions(uint dwDisableMask)
{
_dwDisabledISA = dwDisableMask;
}
/// Checks which instruction set extensions are supported by the CPU.
uint detectCPUextensions(void)
{
#ifndef __i386__
return 0; // always disable extensions on non-x86 platforms.
#else
uint res = 0;
if (_dwDisabledISA == 0xffffffff) return 0;
asm volatile(
"\n\txor %%esi, %%esi" // clear %%esi = result register
// check if 'cpuid' instructions is available by toggling eflags bit 21
"\n\tpushf" // save eflags to stack
"\n\tpop %%eax" // load eax from stack (with eflags)
"\n\tmovl %%eax, %%ecx" // save the original eflags values to ecx
"\n\txor $0x00200000, %%eax" // toggle bit 21
"\n\tpush %%eax" // store toggled eflags to stack
"\n\tpopf" // load eflags from stack
"\n\tpushf" // save updated eflags to stack
"\n\tpop %%eax" // load from stack
"\n\txor %%edx, %%edx" // clear edx for defaulting no mmx
"\n\tcmp %%ecx, %%eax" // compare to original eflags values
"\n\tjz end" // jumps to 'end' if cpuid not present
// cpuid instruction available, test for presence of mmx instructions
"\n\tmovl $1, %%eax"
"\n\tcpuid"
// movl $0x00800000, %edx // force enable MMX
"\n\ttest $0x00800000, %%edx"
"\n\tjz end" // branch if MMX not available
"\n\tor $0x01, %%esi" // otherwise add MMX support bit
"\n\ttest $0x02000000, %%edx"
"\n\tjz test3DNow" // branch if SSE not available
"\n\tor $0x08, %%esi" // otherwise add SSE support bit
"\n\ttest3DNow:"
// test for precense of AMD extensions
"\n\tmov $0x80000000, %%eax"
"\n\tcpuid"
"\n\tcmp $0x80000000, %%eax"
"\n\tjbe end" // branch if no AMD extensions detected
// test for precense of 3DNow! extension
"\n\tmov $0x80000001, %%eax"
"\n\tcpuid"
"\n\ttest $0x80000000, %%edx"
"\n\tjz end" // branch if 3DNow! not detected
"\n\tor $0x02, %%esi" // otherwise add 3DNow support bit
"\n\tend:"
"\n\tmov %%esi, %0"
: "=r" (res)
: /* no inputs */
: "%edx", "%eax", "%ecx", "%esi" );
return res & ~_dwDisabledISA;
#endif
}

View File

@@ -1,293 +1,293 @@
////////////////////////////////////////////////////////////////////////////////
///
/// A class for parsing the 'soundstretch' application command line parameters
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:47 $
// File revision : $Revision: 1.2 $
//
// $Id: RunParameters.cpp,v 1.2 2006-09-18 07:31:47 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <string>
#include <stdlib.h>
#include "RunParameters.h"
using namespace std;
// Program usage instructions
static const char licenseText[] =
" LICENSE:\n"
" ========\n"
" \n"
" SoundTouch sound processing library\n"
" Copyright (c) Olli Parviainen\n"
" \n"
" This library is free software; you can redistribute it and/or\n"
" modify it under the terms of the GNU Lesser General Public\n"
" License as published by the Free Software Foundation; either\n"
" version 2.1 of the License, or (at your option) any later version.\n"
" \n"
" This library is distributed in the hope that it will be useful,\n"
" but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n"
" Lesser General Public License for more details.\n"
" \n"
" You should have received a copy of the GNU Lesser General Public\n"
" License along with this library; if not, write to the Free Software\n"
" Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n"
" \n"
"This application is distributed with full source codes; however, if you\n"
"didn't receive them, please visit the author's homepage (see the link above).";
static const char whatText[] =
"This application processes WAV audio files by modifying the sound tempo,\n"
"pitch and playback rate properties independently from each other.\n"
"\n";
static const char usage[] =
"Usage :\n"
" soundstretch infile.wav outfile.wav [switches]\n\n"
"Available switches are:\n"
" -tempo=n : Change sound tempo by n percents (n=-95..+5000 %)\n"
" -pitch=n : Change sound pitch by n semitones (n=-60..+60 semitones)\n"
" -rate=n : Change sound rate by n percents (n=-95..+5000 %)\n"
" -bpm=n : Detect the BPM rate of sound and adjust tempo to meet 'n' BPMs.\n"
" If '=n' is omitted, just detects the BPM rate.\n"
" -quick : Use quicker tempo change algorithm (gain speed, lose quality)\n"
" -naa : Don't use anti-alias filtering (gain speed, lose quality)\n"
" -license : Display the program license text (LGPL)\n";
// Converts a char into lower case
static int _toLowerCase(int c)
{
if (c >= 'A' && c <= 'Z')
{
c += 'a' - 'A';
}
return c;
}
// Constructor
RunParameters::RunParameters(const int nParams, const char *paramStr[])
{
int i;
int nFirstParam;
if (nParams < 3)
{
// Too few parameters
if (nParams > 1 && paramStr[1][0] == '-' &&
_toLowerCase(paramStr[1][1]) == 'l')
{
// '-license' switch
throwLicense();
}
string msg = whatText;
msg += usage;
throw runtime_error(msg.c_str());
}
inFileName = NULL;
outFileName = NULL;
tempoDelta = 0;
pitchDelta = 0;
rateDelta = 0;
quick = 0;
noAntiAlias = 0;
goalBPM = 0;
detectBPM = FALSE;
// Get input & output file names
inFileName = (char*)paramStr[1];
outFileName = (char*)paramStr[2];
if (outFileName[0] == '-')
{
// no outputfile name was given but parameters
outFileName = NULL;
nFirstParam = 2;
}
else
{
nFirstParam = 3;
}
// parse switch parameters
for (i = nFirstParam; i < nParams; i ++)
{
parseSwitchParam(paramStr[i]);
}
checkLimits();
}
// Checks parameter limits
void RunParameters::checkLimits()
{
if (tempoDelta < -95.0f)
{
tempoDelta = -95.0f;
}
else if (tempoDelta > 5000.0f)
{
tempoDelta = 5000.0f;
}
if (pitchDelta < -60.0f)
{
pitchDelta = -60.0f;
}
else if (pitchDelta > 60.0f)
{
pitchDelta = 60.0f;
}
if (rateDelta < -95.0f)
{
rateDelta = -95.0f;
}
else if (rateDelta > 5000.0f)
{
rateDelta = 5000.0f;
}
}
// Unknown switch parameter -- throws an exception with an error message
void RunParameters::throwIllegalParamExp(const string &str) const
{
string msg = "ERROR : Illegal parameter \"";
msg += str;
msg += "\".\n\n";
msg += usage;
throw runtime_error(msg.c_str());
}
void RunParameters::throwLicense() const
{
throw runtime_error(licenseText);
}
float RunParameters::parseSwitchValue(const string &str) const
{
int pos;
pos = str.find_first_of('=');
if (pos < 0)
{
// '=' missing
throwIllegalParamExp(str);
}
// Read numerical parameter value after '='
return (float)atof(str.substr(pos + 1).c_str());
}
// Interprets a single switch parameter string of format "-switch=xx"
// Valid switches are "-tempo=xx", "-pitch=xx" and "-rate=xx". Stores
// switch values into 'params' structure.
void RunParameters::parseSwitchParam(const string &str)
{
int upS;
if (str[0] != '-')
{
// leading hyphen missing => not a valid parameter
throwIllegalParamExp(str);
}
// Take the first character of switch name & change to lower case
upS = _toLowerCase(str[1]);
// interpret the switch name & operate accordingly
switch (upS)
{
case 't' :
// switch '-tempo=xx'
tempoDelta = parseSwitchValue(str);
break;
case 'p' :
// switch '-pitch=xx'
pitchDelta = parseSwitchValue(str);
break;
case 'r' :
// switch '-rate=xx'
rateDelta = parseSwitchValue(str);
break;
case 'b' :
// switch '-bpm=xx'
detectBPM = TRUE;
try
{
goalBPM = parseSwitchValue(str);
}
catch (runtime_error)
{
// illegal or missing bpm value => just calculate bpm
goalBPM = 0;
}
break;
case 'q' :
// switch '-quick'
quick = 1;
break;
case 'n' :
// switch '-naa'
noAntiAlias = 1;
break;
case 'l' :
// switch '-license'
throwLicense();
break;
default:
// unknown switch
throwIllegalParamExp(str);
}
}
////////////////////////////////////////////////////////////////////////////////
///
/// A class for parsing the 'soundstretch' application command line parameters
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:47 $
// File revision : $Revision: 1.2 $
//
// $Id: RunParameters.cpp,v 1.2 2006-09-18 07:31:47 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <string>
#include <stdlib.h>
#include "RunParameters.h"
using namespace std;
// Program usage instructions
static const char licenseText[] =
" LICENSE:\n"
" ========\n"
" \n"
" SoundTouch sound processing library\n"
" Copyright (c) Olli Parviainen\n"
" \n"
" This library is free software; you can redistribute it and/or\n"
" modify it under the terms of the GNU Lesser General Public\n"
" License as published by the Free Software Foundation; either\n"
" version 2.1 of the License, or (at your option) any later version.\n"
" \n"
" This library is distributed in the hope that it will be useful,\n"
" but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n"
" Lesser General Public License for more details.\n"
" \n"
" You should have received a copy of the GNU Lesser General Public\n"
" License along with this library; if not, write to the Free Software\n"
" Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n"
" \n"
"This application is distributed with full source codes; however, if you\n"
"didn't receive them, please visit the author's homepage (see the link above).";
static const char whatText[] =
"This application processes WAV audio files by modifying the sound tempo,\n"
"pitch and playback rate properties independently from each other.\n"
"\n";
static const char usage[] =
"Usage :\n"
" soundstretch infile.wav outfile.wav [switches]\n\n"
"Available switches are:\n"
" -tempo=n : Change sound tempo by n percents (n=-95..+5000 %)\n"
" -pitch=n : Change sound pitch by n semitones (n=-60..+60 semitones)\n"
" -rate=n : Change sound rate by n percents (n=-95..+5000 %)\n"
" -bpm=n : Detect the BPM rate of sound and adjust tempo to meet 'n' BPMs.\n"
" If '=n' is omitted, just detects the BPM rate.\n"
" -quick : Use quicker tempo change algorithm (gain speed, lose quality)\n"
" -naa : Don't use anti-alias filtering (gain speed, lose quality)\n"
" -license : Display the program license text (LGPL)\n";
// Converts a char into lower case
static int _toLowerCase(int c)
{
if (c >= 'A' && c <= 'Z')
{
c += 'a' - 'A';
}
return c;
}
// Constructor
RunParameters::RunParameters(const int nParams, const char *paramStr[])
{
int i;
int nFirstParam;
if (nParams < 3)
{
// Too few parameters
if (nParams > 1 && paramStr[1][0] == '-' &&
_toLowerCase(paramStr[1][1]) == 'l')
{
// '-license' switch
throwLicense();
}
string msg = whatText;
msg += usage;
throw runtime_error(msg.c_str());
}
inFileName = NULL;
outFileName = NULL;
tempoDelta = 0;
pitchDelta = 0;
rateDelta = 0;
quick = 0;
noAntiAlias = 0;
goalBPM = 0;
detectBPM = FALSE;
// Get input & output file names
inFileName = (char*)paramStr[1];
outFileName = (char*)paramStr[2];
if (outFileName[0] == '-')
{
// no outputfile name was given but parameters
outFileName = NULL;
nFirstParam = 2;
}
else
{
nFirstParam = 3;
}
// parse switch parameters
for (i = nFirstParam; i < nParams; i ++)
{
parseSwitchParam(paramStr[i]);
}
checkLimits();
}
// Checks parameter limits
void RunParameters::checkLimits()
{
if (tempoDelta < -95.0f)
{
tempoDelta = -95.0f;
}
else if (tempoDelta > 5000.0f)
{
tempoDelta = 5000.0f;
}
if (pitchDelta < -60.0f)
{
pitchDelta = -60.0f;
}
else if (pitchDelta > 60.0f)
{
pitchDelta = 60.0f;
}
if (rateDelta < -95.0f)
{
rateDelta = -95.0f;
}
else if (rateDelta > 5000.0f)
{
rateDelta = 5000.0f;
}
}
// Unknown switch parameter -- throws an exception with an error message
void RunParameters::throwIllegalParamExp(const string &str) const
{
string msg = "ERROR : Illegal parameter \"";
msg += str;
msg += "\".\n\n";
msg += usage;
throw runtime_error(msg.c_str());
}
void RunParameters::throwLicense() const
{
throw runtime_error(licenseText);
}
float RunParameters::parseSwitchValue(const string &str) const
{
int pos;
pos = str.find_first_of('=');
if (pos < 0)
{
// '=' missing
throwIllegalParamExp(str);
}
// Read numerical parameter value after '='
return (float)atof(str.substr(pos + 1).c_str());
}
// Interprets a single switch parameter string of format "-switch=xx"
// Valid switches are "-tempo=xx", "-pitch=xx" and "-rate=xx". Stores
// switch values into 'params' structure.
void RunParameters::parseSwitchParam(const string &str)
{
int upS;
if (str[0] != '-')
{
// leading hyphen missing => not a valid parameter
throwIllegalParamExp(str);
}
// Take the first character of switch name & change to lower case
upS = _toLowerCase(str[1]);
// interpret the switch name & operate accordingly
switch (upS)
{
case 't' :
// switch '-tempo=xx'
tempoDelta = parseSwitchValue(str);
break;
case 'p' :
// switch '-pitch=xx'
pitchDelta = parseSwitchValue(str);
break;
case 'r' :
// switch '-rate=xx'
rateDelta = parseSwitchValue(str);
break;
case 'b' :
// switch '-bpm=xx'
detectBPM = TRUE;
try
{
goalBPM = parseSwitchValue(str);
}
catch (runtime_error)
{
// illegal or missing bpm value => just calculate bpm
goalBPM = 0;
}
break;
case 'q' :
// switch '-quick'
quick = 1;
break;
case 'n' :
// switch '-naa'
noAntiAlias = 1;
break;
case 'l' :
// switch '-license'
throwLicense();
break;
default:
// unknown switch
throwIllegalParamExp(str);
}
}

View File

@@ -1,71 +1,71 @@
////////////////////////////////////////////////////////////////////////////////
///
/// A class for parsing the 'soundstretch' application command line parameters
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:47 $
// File revision : $Revision: 1.2 $
//
// $Id: RunParameters.h,v 1.2 2006-09-18 07:31:47 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef RUNPARAMETERS_H
#define RUNPARAMETERS_H
#include "STTypes.h"
#include <string>
using namespace std;
/// Parses command line parameters into program parameters
class RunParameters
{
private:
void throwIllegalParamExp(const string &str) const;
void throwLicense() const;
void parseSwitchParam(const string &str);
void checkLimits();
float parseSwitchValue(const string &str) const;
public:
char *inFileName;
char *outFileName;
float tempoDelta;
float pitchDelta;
float rateDelta;
int quick;
int noAntiAlias;
float goalBPM;
BOOL detectBPM;
RunParameters(const int nParams, const char *paramStr[]);
};
#endif
////////////////////////////////////////////////////////////////////////////////
///
/// A class for parsing the 'soundstretch' application command line parameters
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:47 $
// File revision : $Revision: 1.2 $
//
// $Id: RunParameters.h,v 1.2 2006-09-18 07:31:47 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef RUNPARAMETERS_H
#define RUNPARAMETERS_H
#include "STTypes.h"
#include <string>
using namespace std;
/// Parses command line parameters into program parameters
class RunParameters
{
private:
void throwIllegalParamExp(const string &str) const;
void throwLicense() const;
void parseSwitchParam(const string &str);
void checkLimits();
float parseSwitchValue(const string &str) const;
public:
char *inFileName;
char *outFileName;
float tempoDelta;
float pitchDelta;
float rateDelta;
int quick;
int noAntiAlias;
float goalBPM;
BOOL detectBPM;
RunParameters(const int nParams, const char *paramStr[]);
};
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,253 +1,253 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Classes for easy reading & writing of WAV sound files.
///
/// For big-endian CPU, define BIG_ENDIAN during compile-time to correctly
/// parse the WAV files with such processors.
///
/// Admittingly, more complete WAV reader routines may exist in public domain, but
/// the reason for 'yet another' one is that those generic WAV reader libraries are
/// exhaustingly large and cumbersome! Wanted to have something simpler here, i.e.
/// something that's not already larger than rest of the SoundTouch/SoundStretch program...
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.2 $
//
// $Id: WavFile.h,v 1.2 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef WAVFILE_H
#define WAVFILE_H
#include <stdio.h>
#ifndef uint
typedef unsigned int uint;
#endif
/// WAV audio file 'riff' section header
typedef struct
{
char riff_char[4];
int package_len;
char wave[4];
} WavRiff;
/// WAV audio file 'format' section header
typedef struct
{
char fmt[4];
int format_len;
short fixed;
short channel_number;
int sample_rate;
int byte_rate;
short byte_per_sample;
short bits_per_sample;
} WavFormat;
/// WAV audio file 'data' section header
typedef struct
{
char data_field[4];
uint data_len;
} WavData;
/// WAV audio file header
typedef struct
{
WavRiff riff;
WavFormat format;
WavData data;
} WavHeader;
/// Class for reading WAV audio files.
class WavInFile
{
private:
/// File pointer.
FILE *fptr;
/// Counter of how many bytes of sample data have been read from the file.
uint dataRead;
/// WAV header information
WavHeader header;
/// Read WAV file headers.
/// \return zero if all ok, nonzero if file format is invalid.
int readWavHeaders();
/// Checks WAV file header tags.
/// \return zero if all ok, nonzero if file format is invalid.
int checkCharTags();
/// Reads a single WAV file header block.
/// \return zero if all ok, nonzero if file format is invalid.
int readHeaderBlock();
/// Reads WAV file 'riff' block
int readRIFFBlock();
public:
/// Constructor: Opens the given WAV file. If the file can't be opened,
/// throws 'runtime_error' exception.
WavInFile(const char *filename);
/// Destructor: Closes the file.
~WavInFile();
/// Close the file. Notice that file is automatically closed also when the
/// class instance is deleted.
void close();
/// Rewind to beginning of the file
void rewind();
/// Get sample rate.
uint getSampleRate() const;
/// Get number of bits per sample, i.e. 8 or 16.
uint getNumBits() const;
/// Get sample data size in bytes. Ahem, this should return same information as
/// 'getBytesPerSample'...
uint getDataSizeInBytes() const;
/// Get total number of samples in file.
uint getNumSamples() const;
/// Get number of bytes per audio sample (e.g. 16bit stereo = 4 bytes/sample)
uint getBytesPerSample() const;
/// Get number of audio channels in the file (1=mono, 2=stereo)
uint getNumChannels() const;
/// Get the audio file length in milliseconds
uint getLengthMS() const;
/// Reads audio samples from the WAV file. This routine works only for 8 bit samples.
/// Reads given number of elements from the file or if end-of-file reached, as many
/// elements as are left in the file.
///
/// \return Number of 8-bit integers read from the file.
int read(char *buffer, int maxElems);
/// Reads audio samples from the WAV file to 16 bit integer format. Reads given number
/// of elements from the file or if end-of-file reached, as many elements as are
/// left in the file.
///
/// \return Number of 16-bit integers read from the file.
int read(short *buffer, ///< Pointer to buffer where to read data.
int maxElems ///< Size of 'buffer' array (number of array elements).
);
/// Reads audio samples from the WAV file to floating point format, converting
/// sample values to range [-1,1[. Reads given number of elements from the file
/// or if end-of-file reached, as many elements as are left in the file.
///
/// \return Number of elements read from the file.
int read(float *buffer, ///< Pointer to buffer where to read data.
int maxElems ///< Size of 'buffer' array (number of array elements).
);
/// Check end-of-file.
///
/// \return Nonzero if end-of-file reached.
int eof() const;
};
/// Class for writing WAV audio files.
class WavOutFile
{
private:
/// Pointer to the WAV file
FILE *fptr;
/// WAV file header data.
WavHeader header;
/// Counter of how many bytes have been written to the file so far.
int bytesWritten;
/// Fills in WAV file header information.
void fillInHeader(const uint sampleRate, const uint bits, const uint channels);
/// Finishes the WAV file header by supplementing information of amount of
/// data written to file etc
void finishHeader();
/// Writes the WAV file header.
void writeHeader();
public:
/// Constructor: Creates a new WAV file. Throws a 'runtime_error' exception
/// if file creation fails.
WavOutFile(const char *fileName, ///< Filename
int sampleRate, ///< Sample rate (e.g. 44100 etc)
int bits, ///< Bits per sample (8 or 16 bits)
int channels ///< Number of channels (1=mono, 2=stereo)
);
/// Destructor: Finalizes & closes the WAV file.
~WavOutFile();
/// Write data to WAV file. This function works only with 8bit samples.
/// Throws a 'runtime_error' exception if writing to file fails.
void write(const char *buffer, ///< Pointer to sample data buffer.
int numElems ///< How many array items are to be written to file.
);
/// Write data to WAV file. Throws a 'runtime_error' exception if writing to
/// file fails.
void write(const short *buffer, ///< Pointer to sample data buffer.
int numElems ///< How many array items are to be written to file.
);
/// Write data to WAV file in floating point format, saturating sample values to range
/// [-1..+1[. Throws a 'runtime_error' exception if writing to file fails.
void write(const float *buffer, ///< Pointer to sample data buffer.
int numElems ///< How many array items are to be written to file.
);
/// Finalize & close the WAV file. Automatically supplements the WAV file header
/// information according to written data etc.
///
/// Notice that file is automatically closed also when the class instance is deleted.
void close();
};
#endif
////////////////////////////////////////////////////////////////////////////////
///
/// Classes for easy reading & writing of WAV sound files.
///
/// For big-endian CPU, define BIG_ENDIAN during compile-time to correctly
/// parse the WAV files with such processors.
///
/// Admittingly, more complete WAV reader routines may exist in public domain, but
/// the reason for 'yet another' one is that those generic WAV reader libraries are
/// exhaustingly large and cumbersome! Wanted to have something simpler here, i.e.
/// something that's not already larger than rest of the SoundTouch/SoundStretch program...
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.2 $
//
// $Id: WavFile.h,v 1.2 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef WAVFILE_H
#define WAVFILE_H
#include <stdio.h>
#ifndef uint
typedef unsigned int uint;
#endif
/// WAV audio file 'riff' section header
typedef struct
{
char riff_char[4];
int package_len;
char wave[4];
} WavRiff;
/// WAV audio file 'format' section header
typedef struct
{
char fmt[4];
int format_len;
short fixed;
short channel_number;
int sample_rate;
int byte_rate;
short byte_per_sample;
short bits_per_sample;
} WavFormat;
/// WAV audio file 'data' section header
typedef struct
{
char data_field[4];
uint data_len;
} WavData;
/// WAV audio file header
typedef struct
{
WavRiff riff;
WavFormat format;
WavData data;
} WavHeader;
/// Class for reading WAV audio files.
class WavInFile
{
private:
/// File pointer.
FILE *fptr;
/// Counter of how many bytes of sample data have been read from the file.
uint dataRead;
/// WAV header information
WavHeader header;
/// Read WAV file headers.
/// \return zero if all ok, nonzero if file format is invalid.
int readWavHeaders();
/// Checks WAV file header tags.
/// \return zero if all ok, nonzero if file format is invalid.
int checkCharTags();
/// Reads a single WAV file header block.
/// \return zero if all ok, nonzero if file format is invalid.
int readHeaderBlock();
/// Reads WAV file 'riff' block
int readRIFFBlock();
public:
/// Constructor: Opens the given WAV file. If the file can't be opened,
/// throws 'runtime_error' exception.
WavInFile(const char *filename);
/// Destructor: Closes the file.
~WavInFile();
/// Close the file. Notice that file is automatically closed also when the
/// class instance is deleted.
void close();
/// Rewind to beginning of the file
void rewind();
/// Get sample rate.
uint getSampleRate() const;
/// Get number of bits per sample, i.e. 8 or 16.
uint getNumBits() const;
/// Get sample data size in bytes. Ahem, this should return same information as
/// 'getBytesPerSample'...
uint getDataSizeInBytes() const;
/// Get total number of samples in file.
uint getNumSamples() const;
/// Get number of bytes per audio sample (e.g. 16bit stereo = 4 bytes/sample)
uint getBytesPerSample() const;
/// Get number of audio channels in the file (1=mono, 2=stereo)
uint getNumChannels() const;
/// Get the audio file length in milliseconds
uint getLengthMS() const;
/// Reads audio samples from the WAV file. This routine works only for 8 bit samples.
/// Reads given number of elements from the file or if end-of-file reached, as many
/// elements as are left in the file.
///
/// \return Number of 8-bit integers read from the file.
int read(char *buffer, int maxElems);
/// Reads audio samples from the WAV file to 16 bit integer format. Reads given number
/// of elements from the file or if end-of-file reached, as many elements as are
/// left in the file.
///
/// \return Number of 16-bit integers read from the file.
int read(short *buffer, ///< Pointer to buffer where to read data.
int maxElems ///< Size of 'buffer' array (number of array elements).
);
/// Reads audio samples from the WAV file to floating point format, converting
/// sample values to range [-1,1[. Reads given number of elements from the file
/// or if end-of-file reached, as many elements as are left in the file.
///
/// \return Number of elements read from the file.
int read(float *buffer, ///< Pointer to buffer where to read data.
int maxElems ///< Size of 'buffer' array (number of array elements).
);
/// Check end-of-file.
///
/// \return Nonzero if end-of-file reached.
int eof() const;
};
/// Class for writing WAV audio files.
class WavOutFile
{
private:
/// Pointer to the WAV file
FILE *fptr;
/// WAV file header data.
WavHeader header;
/// Counter of how many bytes have been written to the file so far.
int bytesWritten;
/// Fills in WAV file header information.
void fillInHeader(const uint sampleRate, const uint bits, const uint channels);
/// Finishes the WAV file header by supplementing information of amount of
/// data written to file etc
void finishHeader();
/// Writes the WAV file header.
void writeHeader();
public:
/// Constructor: Creates a new WAV file. Throws a 'runtime_error' exception
/// if file creation fails.
WavOutFile(const char *fileName, ///< Filename
int sampleRate, ///< Sample rate (e.g. 44100 etc)
int bits, ///< Bits per sample (8 or 16 bits)
int channels ///< Number of channels (1=mono, 2=stereo)
);
/// Destructor: Finalizes & closes the WAV file.
~WavOutFile();
/// Write data to WAV file. This function works only with 8bit samples.
/// Throws a 'runtime_error' exception if writing to file fails.
void write(const char *buffer, ///< Pointer to sample data buffer.
int numElems ///< How many array items are to be written to file.
);
/// Write data to WAV file. Throws a 'runtime_error' exception if writing to
/// file fails.
void write(const short *buffer, ///< Pointer to sample data buffer.
int numElems ///< How many array items are to be written to file.
);
/// Write data to WAV file in floating point format, saturating sample values to range
/// [-1..+1[. Throws a 'runtime_error' exception if writing to file fails.
void write(const float *buffer, ///< Pointer to sample data buffer.
int numElems ///< How many array items are to be written to file.
);
/// Finalize & close the WAV file. Automatically supplements the WAV file header
/// information according to written data etc.
///
/// Notice that file is automatically closed also when the class instance is deleted.
void close();
};
#endif

View File

@@ -1,288 +1,288 @@
////////////////////////////////////////////////////////////////////////////////
///
/// SoundStretch main routine.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.3 $
//
// $Id: main.cpp,v 1.3 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <stdio.h>
#include "RunParameters.h"
#include "WavFile.h"
#include "SoundTouch.h"
#include "BPMDetect.h"
using namespace soundtouch;
using namespace std;
// Processing chunk size
#define BUFF_SIZE 2048
static const char _helloText[] =
"\n"
" SoundStretch v%s - Written by Olli Parviainen 2001 - 2006\n"
"==================================================================\n"
"author e-mail: <oparviai@iki.fi> - WWW: http://www.surina.net/soundtouch\n"
"\n"
"This program is subject to (L)GPL license. Run \"soundstretch -license\" for\n"
"more information.\n"
"\n";
static void openFiles(WavInFile **inFile, WavOutFile **outFile, const RunParameters *params)
{
int bits, samplerate, channels;
// open input file...
*inFile = new WavInFile(params->inFileName);
// ... open output file with same sound parameters
bits = (*inFile)->getNumBits();
samplerate = (*inFile)->getSampleRate();
channels = (*inFile)->getNumChannels();
if (params->outFileName)
{
*outFile = new WavOutFile(params->outFileName, samplerate, bits, channels);
}
else
{
*outFile = NULL;
}
}
// Sets the 'SoundTouch' object up according to input file sound format &
// command line parameters
static void setup(SoundTouch *pSoundTouch, const WavInFile *inFile, const RunParameters *params)
{
int sampleRate;
int channels;
sampleRate = inFile->getSampleRate();
channels = inFile->getNumChannels();
pSoundTouch->setSampleRate(sampleRate);
pSoundTouch->setChannels(channels);
pSoundTouch->setTempoChange(params->tempoDelta);
pSoundTouch->setPitchSemiTones(params->pitchDelta);
pSoundTouch->setRateChange(params->rateDelta);
pSoundTouch->setSetting(SETTING_USE_QUICKSEEK, params->quick);
pSoundTouch->setSetting(SETTING_USE_AA_FILTER, !params->noAntiAlias);
// print processing information
if (params->outFileName)
{
#ifdef INTEGER_SAMPLES
printf("Uses 16bit integer sample type in processing.\n\n");
#else
#ifndef FLOAT_SAMPLES
#error "Sampletype not defined"
#endif
printf("Uses 32bit floating point sample type in processing.\n\n");
#endif
// print processing information only if outFileName given i.e. some processing will happen
printf("Processing the file with the following changes:\n");
printf(" tempo change = %+g %%\n", params->tempoDelta);
printf(" pitch change = %+g semitones\n", params->pitchDelta);
printf(" rate change = %+g %%\n\n", params->rateDelta);
printf("Working...");
}
else
{
// outFileName not given
printf("Warning: output file name missing, won't output anything.\n\n");
}
fflush(stdout);
}
// Processes the sound
static void process(SoundTouch *pSoundTouch, WavInFile *inFile, WavOutFile *outFile)
{
int nSamples;
int nChannels;
int buffSizeSamples;
SAMPLETYPE sampleBuffer[BUFF_SIZE];
if ((inFile == NULL) || (outFile == NULL)) return; // nothing to do.
nChannels = inFile->getNumChannels();
buffSizeSamples = BUFF_SIZE / nChannels;
// Process samples read from the input file
while (inFile->eof() == 0)
{
int num;
// Read a chunk of samples from the input file
num = inFile->read(sampleBuffer, BUFF_SIZE);
nSamples = num / inFile->getNumChannels();
// Feed the samples into SoundTouch processor
pSoundTouch->putSamples(sampleBuffer, nSamples);
// Read ready samples from SoundTouch processor & write them output file.
// NOTES:
// - 'receiveSamples' doesn't necessarily return any samples at all
// during some rounds!
// - On the other hand, during some round 'receiveSamples' may have more
// ready samples than would fit into 'sampleBuffer', and for this reason
// the 'receiveSamples' call is iterated for as many times as it
// outputs samples.
do
{
nSamples = pSoundTouch->receiveSamples(sampleBuffer, buffSizeSamples);
outFile->write(sampleBuffer, nSamples * nChannels);
} while (nSamples != 0);
}
// Now the input file is processed, yet 'flush' few last samples that are
// hiding in the SoundTouch's internal processing pipeline.
pSoundTouch->flush();
do
{
nSamples = pSoundTouch->receiveSamples(sampleBuffer, buffSizeSamples);
outFile->write(sampleBuffer, nSamples * nChannels);
} while (nSamples != 0);
}
// Detect BPM rate of inFile and adjust tempo setting accordingly if necessary
static void detectBPM(WavInFile *inFile, RunParameters *params)
{
float bpmValue;
int nChannels;
BPMDetect bpm(inFile->getNumChannels(), inFile->getSampleRate());
SAMPLETYPE sampleBuffer[BUFF_SIZE];
// detect bpm rate
printf("Detecting BPM rate...");
fflush(stdout);
nChannels = inFile->getNumChannels();
// Process the 'inFile' in small blocks, repeat until whole file has
// been processed
while (inFile->eof() == 0)
{
int num, samples;
// Read sample data from input file
num = inFile->read(sampleBuffer, BUFF_SIZE);
// Enter the new samples to the bpm analyzer class
samples = num / nChannels;
bpm.inputSamples(sampleBuffer, samples);
}
// Now the whole song data has been analyzed. Read the resulting bpm.
bpmValue = bpm.getBpm();
printf("Done!\n");
// rewind the file after bpm detection
inFile->rewind();
if (bpmValue > 0)
{
printf("Detected BPM rate %.1f\n\n", bpmValue);
}
else
{
printf("Couldn't detect BPM rate.\n\n");
return;
}
if (params->goalBPM > 0)
{
// adjust tempo to given bpm
params->tempoDelta = (params->goalBPM / bpmValue - 1.0f) * 100.0f;
printf("The file will be converted to %.1f BPM\n\n", params->goalBPM);
}
}
int main(const int nParams, const char *paramStr[])
{
WavInFile *inFile;
WavOutFile *outFile;
RunParameters *params;
SoundTouch SoundTouch;
printf(_helloText, SoundTouch::getVersionString());
try
{
// Parse command line parameters
params = new RunParameters(nParams, paramStr);
// Open input & output files
openFiles(&inFile, &outFile, params);
if (params->detectBPM == TRUE)
{
// detect sound BPM (and adjust processing parameters
// accordingly if necessary)
detectBPM(inFile, params);
}
// Setup the 'SoundTouch' object for processing the sound
setup(&SoundTouch, inFile, params);
// Process the sound
process(&SoundTouch, inFile, outFile);
// Close WAV file handles & dispose of the objects
delete inFile;
delete outFile;
delete params;
printf("Done!\n");
}
catch (runtime_error &e)
{
// An exception occurred during processing, display an error message
printf("%s\n", e.what());
return -1;
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
///
/// SoundStretch main routine.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.3 $
//
// $Id: main.cpp,v 1.3 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <stdexcept>
#include <stdio.h>
#include "RunParameters.h"
#include "WavFile.h"
#include "SoundTouch.h"
#include "BPMDetect.h"
using namespace soundtouch;
using namespace std;
// Processing chunk size
#define BUFF_SIZE 2048
static const char _helloText[] =
"\n"
" SoundStretch v%s - Written by Olli Parviainen 2001 - 2006\n"
"==================================================================\n"
"author e-mail: <oparviai@iki.fi> - WWW: http://www.surina.net/soundtouch\n"
"\n"
"This program is subject to (L)GPL license. Run \"soundstretch -license\" for\n"
"more information.\n"
"\n";
static void openFiles(WavInFile **inFile, WavOutFile **outFile, const RunParameters *params)
{
int bits, samplerate, channels;
// open input file...
*inFile = new WavInFile(params->inFileName);
// ... open output file with same sound parameters
bits = (*inFile)->getNumBits();
samplerate = (*inFile)->getSampleRate();
channels = (*inFile)->getNumChannels();
if (params->outFileName)
{
*outFile = new WavOutFile(params->outFileName, samplerate, bits, channels);
}
else
{
*outFile = NULL;
}
}
// Sets the 'SoundTouch' object up according to input file sound format &
// command line parameters
static void setup(SoundTouch *pSoundTouch, const WavInFile *inFile, const RunParameters *params)
{
int sampleRate;
int channels;
sampleRate = inFile->getSampleRate();
channels = inFile->getNumChannels();
pSoundTouch->setSampleRate(sampleRate);
pSoundTouch->setChannels(channels);
pSoundTouch->setTempoChange(params->tempoDelta);
pSoundTouch->setPitchSemiTones(params->pitchDelta);
pSoundTouch->setRateChange(params->rateDelta);
pSoundTouch->setSetting(SETTING_USE_QUICKSEEK, params->quick);
pSoundTouch->setSetting(SETTING_USE_AA_FILTER, !params->noAntiAlias);
// print processing information
if (params->outFileName)
{
#ifdef INTEGER_SAMPLES
printf("Uses 16bit integer sample type in processing.\n\n");
#else
#ifndef FLOAT_SAMPLES
#error "Sampletype not defined"
#endif
printf("Uses 32bit floating point sample type in processing.\n\n");
#endif
// print processing information only if outFileName given i.e. some processing will happen
printf("Processing the file with the following changes:\n");
printf(" tempo change = %+g %%\n", params->tempoDelta);
printf(" pitch change = %+g semitones\n", params->pitchDelta);
printf(" rate change = %+g %%\n\n", params->rateDelta);
printf("Working...");
}
else
{
// outFileName not given
printf("Warning: output file name missing, won't output anything.\n\n");
}
fflush(stdout);
}
// Processes the sound
static void process(SoundTouch *pSoundTouch, WavInFile *inFile, WavOutFile *outFile)
{
int nSamples;
int nChannels;
int buffSizeSamples;
SAMPLETYPE sampleBuffer[BUFF_SIZE];
if ((inFile == NULL) || (outFile == NULL)) return; // nothing to do.
nChannels = inFile->getNumChannels();
buffSizeSamples = BUFF_SIZE / nChannels;
// Process samples read from the input file
while (inFile->eof() == 0)
{
int num;
// Read a chunk of samples from the input file
num = inFile->read(sampleBuffer, BUFF_SIZE);
nSamples = num / inFile->getNumChannels();
// Feed the samples into SoundTouch processor
pSoundTouch->putSamples(sampleBuffer, nSamples);
// Read ready samples from SoundTouch processor & write them output file.
// NOTES:
// - 'receiveSamples' doesn't necessarily return any samples at all
// during some rounds!
// - On the other hand, during some round 'receiveSamples' may have more
// ready samples than would fit into 'sampleBuffer', and for this reason
// the 'receiveSamples' call is iterated for as many times as it
// outputs samples.
do
{
nSamples = pSoundTouch->receiveSamples(sampleBuffer, buffSizeSamples);
outFile->write(sampleBuffer, nSamples * nChannels);
} while (nSamples != 0);
}
// Now the input file is processed, yet 'flush' few last samples that are
// hiding in the SoundTouch's internal processing pipeline.
pSoundTouch->flush();
do
{
nSamples = pSoundTouch->receiveSamples(sampleBuffer, buffSizeSamples);
outFile->write(sampleBuffer, nSamples * nChannels);
} while (nSamples != 0);
}
// Detect BPM rate of inFile and adjust tempo setting accordingly if necessary
static void detectBPM(WavInFile *inFile, RunParameters *params)
{
float bpmValue;
int nChannels;
BPMDetect bpm(inFile->getNumChannels(), inFile->getSampleRate());
SAMPLETYPE sampleBuffer[BUFF_SIZE];
// detect bpm rate
printf("Detecting BPM rate...");
fflush(stdout);
nChannels = inFile->getNumChannels();
// Process the 'inFile' in small blocks, repeat until whole file has
// been processed
while (inFile->eof() == 0)
{
int num, samples;
// Read sample data from input file
num = inFile->read(sampleBuffer, BUFF_SIZE);
// Enter the new samples to the bpm analyzer class
samples = num / nChannels;
bpm.inputSamples(sampleBuffer, samples);
}
// Now the whole song data has been analyzed. Read the resulting bpm.
bpmValue = bpm.getBpm();
printf("Done!\n");
// rewind the file after bpm detection
inFile->rewind();
if (bpmValue > 0)
{
printf("Detected BPM rate %.1f\n\n", bpmValue);
}
else
{
printf("Couldn't detect BPM rate.\n\n");
return;
}
if (params->goalBPM > 0)
{
// adjust tempo to given bpm
params->tempoDelta = (params->goalBPM / bpmValue - 1.0f) * 100.0f;
printf("The file will be converted to %.1f BPM\n\n", params->goalBPM);
}
}
int main(const int nParams, const char *paramStr[])
{
WavInFile *inFile;
WavOutFile *outFile;
RunParameters *params;
SoundTouch SoundTouch;
printf(_helloText, SoundTouch::getVersionString());
try
{
// Parse command line parameters
params = new RunParameters(nParams, paramStr);
// Open input & output files
openFiles(&inFile, &outFile, params);
if (params->detectBPM == TRUE)
{
// detect sound BPM (and adjust processing parameters
// accordingly if necessary)
detectBPM(inFile, params);
}
// Setup the 'SoundTouch' object for processing the sound
setup(&SoundTouch, inFile, params);
// Process the sound
process(&SoundTouch, inFile, outFile);
// Close WAV file handles & dispose of the objects
delete inFile;
delete outFile;
delete params;
printf("Done!\n");
}
catch (runtime_error &e)
{
// An exception occurred during processing, display an error message
printf("%s\n", e.what());
return -1;
}
return 0;
}

View File

@@ -1,311 +1,311 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Beats-per-minute (BPM) detection routine.
///
/// The beat detection algorithm works as follows:
/// - Use function 'inputSamples' to input a chunks of samples to the class for
/// analysis. It's a good idea to enter a large sound file or stream in smallish
/// chunks of around few kilosamples in order not to extinguish too much RAM memory.
/// - Inputted sound data is decimated to approx 500 Hz to reduce calculation burden,
/// which is basically ok as low (bass) frequencies mostly determine the beat rate.
/// Simple averaging is used for anti-alias filtering because the resulting signal
/// quality isn't of that high importance.
/// - Decimated sound data is enveloped, i.e. the amplitude shape is detected by
/// taking absolute value that's smoothed by sliding average. Signal levels that
/// are below a couple of times the general RMS amplitude level are cut away to
/// leave only notable peaks there.
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// autocorrelation function of the enveloped signal.
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// function, calculates it's precise location and converts this reading to bpm's.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.2 $
//
// $Id: BPMDetect.cpp,v 1.2 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include <string.h>
#include "FIFOSampleBuffer.h"
#include "PeakFinder.h"
#include "BPMDetect.h"
using namespace soundtouch;
#define INPUT_BLOCK_SAMPLES 2048
#define DECIMATED_BLOCK_SAMPLES 256
typedef unsigned short ushort;
/// decay constant for calculating RMS volume sliding average approximation
/// (time constant is about 10 sec)
const float avgdecay = 0.99986f;
/// Normalization coefficient for calculating RMS sliding average approximation.
const float avgnorm = (1 - avgdecay);
BPMDetect::BPMDetect(int numChannels, int sampleRate)
{
xcorr = NULL;
buffer = new FIFOSampleBuffer();
decimateSum = 0;
decimateCount = 0;
decimateBy = 0;
this->sampleRate = sampleRate;
this->channels = numChannels;
envelopeAccu = 0;
// Initialize RMS volume accumulator to RMS level of 3000 (out of 32768) that's
// a typical RMS signal level value for song data. This value is then adapted
// to the actual level during processing.
#ifdef INTEGER_SAMPLES
// integer samples
RMSVolumeAccu = (3000 * 3000) / avgnorm;
#else
// float samples, scaled to range [-1..+1[
RMSVolumeAccu = (0.092f * 0.092f) / avgnorm;
#endif
init(numChannels, sampleRate);
}
BPMDetect::~BPMDetect()
{
delete[] xcorr;
delete buffer;
}
/// low-pass filter & decimate to about 500 Hz. return number of outputted samples.
///
/// Decimation is used to remove the unnecessary frequencies and thus to reduce
/// the amount of data needed to be processed as calculating autocorrelation
/// function is a very-very heavy operation.
///
/// Anti-alias filtering is done simply by averaging the samples. This is really a
/// poor-man's anti-alias filtering, but it's not so critical in this kind of application
/// (it'd also be difficult to design a high-quality filter with steep cut-off at very
/// narrow band)
int BPMDetect::decimate(SAMPLETYPE *dest, const SAMPLETYPE *src, int numsamples)
{
int count, outcount;
LONG_SAMPLETYPE out;
assert(decimateBy != 0);
outcount = 0;
for (count = 0; count < numsamples; count ++)
{
decimateSum += src[count];
decimateCount ++;
if (decimateCount >= decimateBy)
{
// Store every Nth sample only
out = (LONG_SAMPLETYPE)(decimateSum / decimateBy);
decimateSum = 0;
decimateCount = 0;
#ifdef INTEGER_SAMPLES
// check ranges for sure (shouldn't actually be necessary)
if (out > 32767)
{
out = 32767;
}
else if (out < -32768)
{
out = -32768;
}
#endif // INTEGER_SAMPLES
dest[outcount] = (SAMPLETYPE)out;
outcount ++;
}
}
return outcount;
}
// Calculates autocorrelation function of the sample history buffer
void BPMDetect::updateXCorr(int process_samples)
{
int offs;
SAMPLETYPE *pBuffer;
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
pBuffer = buffer->ptrBegin();
for (offs = windowStart; offs < windowLen; offs ++)
{
LONG_SAMPLETYPE sum;
int i;
sum = 0;
for (i = 0; i < process_samples; i ++)
{
sum += pBuffer[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
}
// xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable coefficients
// if it's desired that the system adapts automatically to
// various bpms, e.g. in processing continouos music stream.
// The 'xcorr_decay' should be a value that's smaller than but
// close to one, and should also depend on 'process_samples' value.
xcorr[offs] += (float)sum;
}
}
// Calculates envelope of the sample data
void BPMDetect::calcEnvelope(SAMPLETYPE *samples, int numsamples)
{
const float decay = 0.7f; // decay constant for smoothing the envelope
const float norm = (1 - decay);
int i;
LONG_SAMPLETYPE out;
float val;
for (i = 0; i < numsamples; i ++)
{
// calc average RMS volume
RMSVolumeAccu *= avgdecay;
val = (float)fabs((float)samples[i]);
RMSVolumeAccu += val * val;
// cut amplitudes that are below 2 times average RMS volume
// (we're interested in peak values, not the silent moments)
val -= 2 * (float)sqrt(RMSVolumeAccu * avgnorm);
val = (val > 0) ? val : 0;
// smooth amplitude envelope
envelopeAccu *= decay;
envelopeAccu += val;
out = (LONG_SAMPLETYPE)(envelopeAccu * norm);
#ifdef INTEGER_SAMPLES
// cut peaks (shouldn't be necessary though)
if (out > 32767) out = 32767;
#endif // INTEGER_SAMPLES
samples[i] = (SAMPLETYPE)out;
}
}
void BPMDetect::inputSamples(SAMPLETYPE *samples, int numSamples)
{
SAMPLETYPE decimated[DECIMATED_BLOCK_SAMPLES];
// convert from stereo to mono if necessary
if (channels == 2)
{
int i;
for (i = 0; i < numSamples; i ++)
{
samples[i] = (samples[i * 2] + samples[i * 2 + 1]) / 2;
}
}
// decimate
numSamples = decimate(decimated, samples, numSamples);
// envelope new samples and add them to buffer
calcEnvelope(decimated, numSamples);
buffer->putSamples(decimated, numSamples);
// when the buffer has enought samples for processing...
if ((int)buffer->numSamples() > windowLen)
{
int processLength;
// how many samples are processed
processLength = buffer->numSamples() - windowLen;
// ... calculate autocorrelations for oldest samples...
updateXCorr(processLength);
// ... and remove them from the buffer
buffer->receiveSamples(processLength);
}
}
void BPMDetect::init(int numChannels, int sampleRate)
{
this->sampleRate = sampleRate;
// choose decimation factor so that result is approx. 500 Hz
decimateBy = sampleRate / 500;
assert(decimateBy > 0);
assert(INPUT_BLOCK_SAMPLES < decimateBy * DECIMATED_BLOCK_SAMPLES);
// Calculate window length & starting item according to desired min & max bpms
windowLen = (60 * sampleRate) / (decimateBy * MIN_BPM);
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM);
assert(windowLen > windowStart);
// allocate new working objects
xcorr = new float[windowLen];
memset(xcorr, 0, windowLen * sizeof(float));
// we do processing in mono mode
buffer->setChannels(1);
buffer->clear();
}
float BPMDetect::getBpm()
{
float peakPos;
PeakFinder peakFinder;
// find peak position
peakPos = peakFinder.detectPeak(xcorr, windowStart, windowLen);
assert(decimateBy != 0);
if (peakPos < 1e-6) return 0.0; // detection failed.
// calculate BPM
return 60.0f * (((float)sampleRate / (float)decimateBy) / peakPos);
}
////////////////////////////////////////////////////////////////////////////////
///
/// Beats-per-minute (BPM) detection routine.
///
/// The beat detection algorithm works as follows:
/// - Use function 'inputSamples' to input a chunks of samples to the class for
/// analysis. It's a good idea to enter a large sound file or stream in smallish
/// chunks of around few kilosamples in order not to extinguish too much RAM memory.
/// - Inputted sound data is decimated to approx 500 Hz to reduce calculation burden,
/// which is basically ok as low (bass) frequencies mostly determine the beat rate.
/// Simple averaging is used for anti-alias filtering because the resulting signal
/// quality isn't of that high importance.
/// - Decimated sound data is enveloped, i.e. the amplitude shape is detected by
/// taking absolute value that's smoothed by sliding average. Signal levels that
/// are below a couple of times the general RMS amplitude level are cut away to
/// leave only notable peaks there.
/// - Repeating sound patterns (e.g. beats) are detected by calculating short-term
/// autocorrelation function of the enveloped signal.
/// - After whole sound data file has been analyzed as above, the bpm level is
/// detected by function 'getBpm' that finds the highest peak of the autocorrelation
/// function, calculates it's precise location and converts this reading to bpm's.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.2 $
//
// $Id: BPMDetect.cpp,v 1.2 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include <string.h>
#include "FIFOSampleBuffer.h"
#include "PeakFinder.h"
#include "BPMDetect.h"
using namespace soundtouch;
#define INPUT_BLOCK_SAMPLES 2048
#define DECIMATED_BLOCK_SAMPLES 256
typedef unsigned short ushort;
/// decay constant for calculating RMS volume sliding average approximation
/// (time constant is about 10 sec)
const float avgdecay = 0.99986f;
/// Normalization coefficient for calculating RMS sliding average approximation.
const float avgnorm = (1 - avgdecay);
BPMDetect::BPMDetect(int numChannels, int sampleRate)
{
xcorr = NULL;
buffer = new FIFOSampleBuffer();
decimateSum = 0;
decimateCount = 0;
decimateBy = 0;
this->sampleRate = sampleRate;
this->channels = numChannels;
envelopeAccu = 0;
// Initialize RMS volume accumulator to RMS level of 3000 (out of 32768) that's
// a typical RMS signal level value for song data. This value is then adapted
// to the actual level during processing.
#ifdef INTEGER_SAMPLES
// integer samples
RMSVolumeAccu = (3000 * 3000) / avgnorm;
#else
// float samples, scaled to range [-1..+1[
RMSVolumeAccu = (0.092f * 0.092f) / avgnorm;
#endif
init(numChannels, sampleRate);
}
BPMDetect::~BPMDetect()
{
delete[] xcorr;
delete buffer;
}
/// low-pass filter & decimate to about 500 Hz. return number of outputted samples.
///
/// Decimation is used to remove the unnecessary frequencies and thus to reduce
/// the amount of data needed to be processed as calculating autocorrelation
/// function is a very-very heavy operation.
///
/// Anti-alias filtering is done simply by averaging the samples. This is really a
/// poor-man's anti-alias filtering, but it's not so critical in this kind of application
/// (it'd also be difficult to design a high-quality filter with steep cut-off at very
/// narrow band)
int BPMDetect::decimate(SAMPLETYPE *dest, const SAMPLETYPE *src, int numsamples)
{
int count, outcount;
LONG_SAMPLETYPE out;
assert(decimateBy != 0);
outcount = 0;
for (count = 0; count < numsamples; count ++)
{
decimateSum += src[count];
decimateCount ++;
if (decimateCount >= decimateBy)
{
// Store every Nth sample only
out = (LONG_SAMPLETYPE)(decimateSum / decimateBy);
decimateSum = 0;
decimateCount = 0;
#ifdef INTEGER_SAMPLES
// check ranges for sure (shouldn't actually be necessary)
if (out > 32767)
{
out = 32767;
}
else if (out < -32768)
{
out = -32768;
}
#endif // INTEGER_SAMPLES
dest[outcount] = (SAMPLETYPE)out;
outcount ++;
}
}
return outcount;
}
// Calculates autocorrelation function of the sample history buffer
void BPMDetect::updateXCorr(int process_samples)
{
int offs;
SAMPLETYPE *pBuffer;
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
pBuffer = buffer->ptrBegin();
for (offs = windowStart; offs < windowLen; offs ++)
{
LONG_SAMPLETYPE sum;
int i;
sum = 0;
for (i = 0; i < process_samples; i ++)
{
sum += pBuffer[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
}
// xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable coefficients
// if it's desired that the system adapts automatically to
// various bpms, e.g. in processing continouos music stream.
// The 'xcorr_decay' should be a value that's smaller than but
// close to one, and should also depend on 'process_samples' value.
xcorr[offs] += (float)sum;
}
}
// Calculates envelope of the sample data
void BPMDetect::calcEnvelope(SAMPLETYPE *samples, int numsamples)
{
const float decay = 0.7f; // decay constant for smoothing the envelope
const float norm = (1 - decay);
int i;
LONG_SAMPLETYPE out;
float val;
for (i = 0; i < numsamples; i ++)
{
// calc average RMS volume
RMSVolumeAccu *= avgdecay;
val = (float)fabs((float)samples[i]);
RMSVolumeAccu += val * val;
// cut amplitudes that are below 2 times average RMS volume
// (we're interested in peak values, not the silent moments)
val -= 2 * (float)sqrt(RMSVolumeAccu * avgnorm);
val = (val > 0) ? val : 0;
// smooth amplitude envelope
envelopeAccu *= decay;
envelopeAccu += val;
out = (LONG_SAMPLETYPE)(envelopeAccu * norm);
#ifdef INTEGER_SAMPLES
// cut peaks (shouldn't be necessary though)
if (out > 32767) out = 32767;
#endif // INTEGER_SAMPLES
samples[i] = (SAMPLETYPE)out;
}
}
void BPMDetect::inputSamples(SAMPLETYPE *samples, int numSamples)
{
SAMPLETYPE decimated[DECIMATED_BLOCK_SAMPLES];
// convert from stereo to mono if necessary
if (channels == 2)
{
int i;
for (i = 0; i < numSamples; i ++)
{
samples[i] = (samples[i * 2] + samples[i * 2 + 1]) / 2;
}
}
// decimate
numSamples = decimate(decimated, samples, numSamples);
// envelope new samples and add them to buffer
calcEnvelope(decimated, numSamples);
buffer->putSamples(decimated, numSamples);
// when the buffer has enought samples for processing...
if ((int)buffer->numSamples() > windowLen)
{
int processLength;
// how many samples are processed
processLength = buffer->numSamples() - windowLen;
// ... calculate autocorrelations for oldest samples...
updateXCorr(processLength);
// ... and remove them from the buffer
buffer->receiveSamples(processLength);
}
}
void BPMDetect::init(int numChannels, int sampleRate)
{
this->sampleRate = sampleRate;
// choose decimation factor so that result is approx. 500 Hz
decimateBy = sampleRate / 500;
assert(decimateBy > 0);
assert(INPUT_BLOCK_SAMPLES < decimateBy * DECIMATED_BLOCK_SAMPLES);
// Calculate window length & starting item according to desired min & max bpms
windowLen = (60 * sampleRate) / (decimateBy * MIN_BPM);
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM);
assert(windowLen > windowStart);
// allocate new working objects
xcorr = new float[windowLen];
memset(xcorr, 0, windowLen * sizeof(float));
// we do processing in mono mode
buffer->setChannels(1);
buffer->clear();
}
float BPMDetect::getBpm()
{
float peakPos;
PeakFinder peakFinder;
// find peak position
peakPos = peakFinder.detectPeak(xcorr, windowStart, windowLen);
assert(decimateBy != 0);
if (peakPos < 1e-6) return 0.0; // detection failed.
// calculate BPM
return 60.0f * (((float)sampleRate / (float)decimateBy) / peakPos);
}

View File

@@ -1,191 +1,191 @@
////////////////////////////////////////////////////////////////////////////////
///
/// Peak detection routine.
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.2 $
//
// $Id: PeakFinder.cpp,v 1.2 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include "PeakFinder.h"
PeakFinder::PeakFinder()
{
}
// Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding
// to direction defined by 'direction' until next 'hump' after minimum value will
// begin
int PeakFinder::findGround(const float *data, int peakpos, int direction) const
{
float refvalue;
int lowpos;
int pos;
int climb_count;
float delta;
climb_count = 0;
refvalue = data[peakpos];
lowpos = peakpos;
pos = peakpos;
while ((pos > minPos) && (pos < maxPos))
{
int prevpos;
prevpos = pos;
pos += direction;
// calculate derivate
delta = data[pos] - data[prevpos];
if (delta <= 0)
{
// going downhill, ok
if (climb_count)
{
climb_count --; // decrease climb count
}
// check if new minimum found
if (data[pos] < refvalue)
{
// new minimum found
lowpos = pos;
refvalue = data[pos];
}
}
else
{
// going uphill, increase climbing counter
climb_count ++;
if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit
}
}
return lowpos;
}
// Find offset where the value crosses the given level, when starting from 'peakpos' and
// proceeds to direction defined in 'direction'
int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const
{
float peaklevel;
int pos;
peaklevel = data[peakpos];
assert(peaklevel >= level);
pos = peakpos;
while ((pos >= minPos) && (pos < maxPos))
{
if (data[pos + direction] < level) return pos; // crossing found
pos += direction;
}
return -1; // not found
}
// Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos'
float PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const
{
int i;
float sum;
float wsum;
sum = 0;
wsum = 0;
for (i = firstPos; i <= lastPos; i ++)
{
sum += (float)i * data[i];
wsum += data[i];
}
return sum / wsum;
}
float PeakFinder::detectPeak(const float *data, int minPos, int maxPos)
{
#define max(x, y) (((x) > (y)) ? (x) : (y))
int i;
int peakpos; // position of peak level
float peakLevel; // peak level
int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level
float cutLevel; // cutting value
float groundLevel; // ground level of the peak
int gp1, gp2; // bottom positions of the peak 'hump'
this->minPos = minPos;
this->maxPos = maxPos;
// find absolute peak
peakpos = minPos;
peakLevel = data[minPos];
for (i = minPos + 1; i < maxPos; i ++)
{
if (data[i] > peakLevel)
{
peakLevel = data[i];
peakpos = i;
}
}
// find ground positions.
gp1 = findGround(data, peakpos, -1);
gp2 = findGround(data, peakpos, 1);
groundLevel = max(data[gp1], data[gp2]);
if (groundLevel < 1e-6) return 0; // ground level too small => detection failed
if ((peakLevel / groundLevel) < 1.3) return 0; // peak less than 30% of the ground level => no good peak detected
// calculate 70%-level of the peak
cutLevel = 0.70f * peakLevel + 0.30f * groundLevel;
// find mid-level crossings
crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1);
crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1);
if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak..
// calculate mass center of the peak surroundings
return calcMassCenter(data, crosspos1, crosspos2);
}
////////////////////////////////////////////////////////////////////////////////
///
/// Peak detection routine.
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:48 $
// File revision : $Revision: 1.2 $
//
// $Id: PeakFinder.cpp,v 1.2 2006-09-18 07:31:48 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <math.h>
#include <assert.h>
#include "PeakFinder.h"
PeakFinder::PeakFinder()
{
}
// Finds 'ground level' of a peak hump by starting from 'peakpos' and proceeding
// to direction defined by 'direction' until next 'hump' after minimum value will
// begin
int PeakFinder::findGround(const float *data, int peakpos, int direction) const
{
float refvalue;
int lowpos;
int pos;
int climb_count;
float delta;
climb_count = 0;
refvalue = data[peakpos];
lowpos = peakpos;
pos = peakpos;
while ((pos > minPos) && (pos < maxPos))
{
int prevpos;
prevpos = pos;
pos += direction;
// calculate derivate
delta = data[pos] - data[prevpos];
if (delta <= 0)
{
// going downhill, ok
if (climb_count)
{
climb_count --; // decrease climb count
}
// check if new minimum found
if (data[pos] < refvalue)
{
// new minimum found
lowpos = pos;
refvalue = data[pos];
}
}
else
{
// going uphill, increase climbing counter
climb_count ++;
if (climb_count > 5) break; // we've been climbing too long => it's next uphill => quit
}
}
return lowpos;
}
// Find offset where the value crosses the given level, when starting from 'peakpos' and
// proceeds to direction defined in 'direction'
int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, int direction) const
{
float peaklevel;
int pos;
peaklevel = data[peakpos];
assert(peaklevel >= level);
pos = peakpos;
while ((pos >= minPos) && (pos < maxPos))
{
if (data[pos + direction] < level) return pos; // crossing found
pos += direction;
}
return -1; // not found
}
// Calculates the center of mass location of 'data' array items between 'firstPos' and 'lastPos'
float PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos) const
{
int i;
float sum;
float wsum;
sum = 0;
wsum = 0;
for (i = firstPos; i <= lastPos; i ++)
{
sum += (float)i * data[i];
wsum += data[i];
}
return sum / wsum;
}
float PeakFinder::detectPeak(const float *data, int minPos, int maxPos)
{
#define max(x, y) (((x) > (y)) ? (x) : (y))
int i;
int peakpos; // position of peak level
float peakLevel; // peak level
int crosspos1, crosspos2; // position where the peak 'hump' crosses cutting level
float cutLevel; // cutting value
float groundLevel; // ground level of the peak
int gp1, gp2; // bottom positions of the peak 'hump'
this->minPos = minPos;
this->maxPos = maxPos;
// find absolute peak
peakpos = minPos;
peakLevel = data[minPos];
for (i = minPos + 1; i < maxPos; i ++)
{
if (data[i] > peakLevel)
{
peakLevel = data[i];
peakpos = i;
}
}
// find ground positions.
gp1 = findGround(data, peakpos, -1);
gp2 = findGround(data, peakpos, 1);
groundLevel = max(data[gp1], data[gp2]);
if (groundLevel < 1e-6) return 0; // ground level too small => detection failed
if ((peakLevel / groundLevel) < 1.3) return 0; // peak less than 30% of the ground level => no good peak detected
// calculate 70%-level of the peak
cutLevel = 0.70f * peakLevel + 0.30f * groundLevel;
// find mid-level crossings
crosspos1 = findCrossingLevel(data, cutLevel, peakpos, -1);
crosspos2 = findCrossingLevel(data, cutLevel, peakpos, 1);
if ((crosspos1 < 0) || (crosspos2 < 0)) return 0; // no crossing, no peak..
// calculate mass center of the peak surroundings
return calcMassCenter(data, crosspos1, crosspos2);
}

View File

@@ -1,85 +1,85 @@
////////////////////////////////////////////////////////////////////////////////
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:49 $
// File revision : $Revision: 1.2 $
//
// $Id: PeakFinder.h,v 1.2 2006-09-18 07:31:49 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _PeakFinder_H_
#define _PeakFinder_H_
class PeakFinder
{
protected:
/// Min, max allowed peak positions within the data vector
int minPos, maxPos;
/// Calculates the mass center between given vector items.
float calcMassCenter(const float *data, ///< Data vector.
int firstPos, ///< Index of first vector item beloging to the peak.
int lastPos ///< Index of last vector item beloging to the peak.
) const;
/// Finds the data vector index where the monotoniously decreasing signal crosses the
/// given level.
int findCrossingLevel(const float *data, ///< Data vector.
float level, ///< Goal crossing level.
int peakpos, ///< Peak position index within the data vector.
int direction /// Direction where to proceed from the peak: 1 = right, -1 = left.
) const;
/// Finds the 'ground' level, i.e. smallest level between two neighbouring peaks, to right-
/// or left-hand side of the given peak position.
int findGround(const float *data, /// Data vector.
int peakpos, /// Peak position index within the data vector.
int direction /// Direction where to proceed from the peak: 1 = right, -1 = left.
) const;
public:
/// Constructor.
PeakFinder();
/// Detect exact peak position of the data vector by finding the largest peak 'hump'
/// and calculating the mass-center location of the peak hump.
///
/// \return The exact mass-center location of the largest peak hump.
float detectPeak(const float *data, /// Data vector to be analyzed. The data vector has
/// to be at least 'maxPos' items long.
int minPos, ///< Min allowed peak location within the vector data.
int maxPos ///< Max allowed peak location within the vector data.
);
};
#endif // _PeakFinder_H_
////////////////////////////////////////////////////////////////////////////////
///
/// The routine detects highest value on an array of values and calculates the
/// precise peak location as a mass-center of the 'hump' around the peak value.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed : $Date: 2006-09-18 07:31:49 $
// File revision : $Revision: 1.2 $
//
// $Id: PeakFinder.h,v 1.2 2006-09-18 07:31:49 richardash1981 Exp $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#ifndef _PeakFinder_H_
#define _PeakFinder_H_
class PeakFinder
{
protected:
/// Min, max allowed peak positions within the data vector
int minPos, maxPos;
/// Calculates the mass center between given vector items.
float calcMassCenter(const float *data, ///< Data vector.
int firstPos, ///< Index of first vector item beloging to the peak.
int lastPos ///< Index of last vector item beloging to the peak.
) const;
/// Finds the data vector index where the monotoniously decreasing signal crosses the
/// given level.
int findCrossingLevel(const float *data, ///< Data vector.
float level, ///< Goal crossing level.
int peakpos, ///< Peak position index within the data vector.
int direction /// Direction where to proceed from the peak: 1 = right, -1 = left.
) const;
/// Finds the 'ground' level, i.e. smallest level between two neighbouring peaks, to right-
/// or left-hand side of the given peak position.
int findGround(const float *data, /// Data vector.
int peakpos, /// Peak position index within the data vector.
int direction /// Direction where to proceed from the peak: 1 = right, -1 = left.
) const;
public:
/// Constructor.
PeakFinder();
/// Detect exact peak position of the data vector by finding the largest peak 'hump'
/// and calculating the mass-center location of the peak hump.
///
/// \return The exact mass-center location of the largest peak hump.
float detectPeak(const float *data, /// Data vector to be analyzed. The data vector has
/// to be at least 'maxPos' items long.
int minPos, ///< Min allowed peak location within the vector data.
int maxPos ///< Max allowed peak location within the vector data.
);
};
#endif // _PeakFinder_H_