1
0
mirror of https://github.com/cookiengineer/audacity synced 2025-10-10 08:33:36 +02:00

Update libvorbis to 1.3.3.

This commit is contained in:
lllucius
2013-10-24 18:24:47 +00:00
parent 78309687be
commit 3a33e2f717
374 changed files with 119632 additions and 45432 deletions

View File

@@ -5,13 +5,13 @@
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
* *
* THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2007 *
* THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 *
* by the Xiph.Org Foundation http://www.xiph.org/ *
* *
********************************************************************
function: LSP (also called LSF) conversion routines
last mod: $Id: lsp.c,v 1.8 2008-02-02 15:53:53 richardash1981 Exp $
last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $
The LSP generation code is taken (with minimal modification and a
few bugfixes) from "On the Computation of the LSP Frequencies" by
@@ -46,14 +46,15 @@
implementation. The float lookup is likely the optimal choice on
any machine with an FPU. The integer implementation is *not* fixed
point (due to the need for a large dynamic range and thus a
seperately tracked exponent) and thus much more complex than the
separately tracked exponent) and thus much more complex than the
relatively simple float implementations. It's mostly for future
work on a fully fixed point implementation for processors like the
ARM family. */
/* undefine both for the 'old' but more precise implementation */
#define FLOAT_LOOKUP
#undef INT_LOOKUP
/* define either of these (preferably FLOAT_LOOKUP) to have faster
but less precise implementation. */
#undef FLOAT_LOOKUP
#undef INT_LOOKUP
#ifdef FLOAT_LOOKUP
#include "lookup.c" /* catch this in the build system; we #include for
@@ -62,11 +63,11 @@
/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
float amp,float ampoffset){
float amp,float ampoffset){
int i;
float wdel=M_PI/ln;
vorbis_fpu_control fpu;
vorbis_fpu_setround(&fpu);
for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
@@ -80,11 +81,11 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
float *ftmp=lsp;
int c=m>>1;
do{
while(c--){
q*=ftmp[0]-w;
p*=ftmp[1]-w;
ftmp+=2;
}while(--c);
}
if(m&1){
/* odd order filter; slightly assymetric */
@@ -99,10 +100,10 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
}
q=frexp(p+q,&qexp);
q=vorbis_fromdBlook(amp*
vorbis_invsqlook(q)*
vorbis_invsq2explook(qexp+m)-
ampoffset);
q=vorbis_fromdBlook(amp*
vorbis_invsqlook(q)*
vorbis_invsq2explook(qexp+m)-
ampoffset);
do{
curve[i++]*=q;
@@ -118,26 +119,26 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
compilers (like gcc) that can't inline across
modules */
static int MLOOP_1[64]={
static const int MLOOP_1[64]={
0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
};
static int MLOOP_2[64]={
static const int MLOOP_2[64]={
0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
};
static int MLOOP_3[8]={0,1,2,2,3,3,3,3};
static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
float amp,float ampoffset){
float amp,float ampoffset){
/* 0 <= m < 256 */
@@ -161,15 +162,15 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
for(j=3;j<m;j+=2){
if(!(shift=MLOOP_1[(pi|qi)>>25]))
if(!(shift=MLOOP_2[(pi|qi)>>19]))
shift=MLOOP_3[(pi|qi)>>16];
if(!(shift=MLOOP_2[(pi|qi)>>19]))
shift=MLOOP_3[(pi|qi)>>16];
qi=(qi>>shift)*labs(ilsp[j-1]-wi);
pi=(pi>>shift)*labs(ilsp[j]-wi);
qexp+=shift;
}
if(!(shift=MLOOP_1[(pi|qi)>>25]))
if(!(shift=MLOOP_2[(pi|qi)>>19]))
shift=MLOOP_3[(pi|qi)>>16];
shift=MLOOP_3[(pi|qi)>>16];
/* pi,qi normalized collectively, both tracked using qexp */
@@ -181,9 +182,9 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
qexp+=shift;
if(!(shift=MLOOP_1[(pi|qi)>>25]))
if(!(shift=MLOOP_2[(pi|qi)>>19]))
shift=MLOOP_3[(pi|qi)>>16];
if(!(shift=MLOOP_2[(pi|qi)>>19]))
shift=MLOOP_3[(pi|qi)>>16];
pi>>=shift;
qi>>=shift;
qexp+=shift-14*((m+1)>>1);
@@ -199,8 +200,8 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
/* even order filter; still symmetric */
/* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
worth tracking step by step */
worth tracking step by step */
pi>>=shift;
qi>>=shift;
qexp+=shift-7*m;
@@ -208,36 +209,36 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
pi=((pi*pi)>>16);
qi=((qi*qi)>>16);
qexp=qexp*2+m;
pi*=(1<<14)-wi;
qi*=(1<<14)+wi;
qi=(qi+pi)>>14;
}
/* we've let the normalization drift because it wasn't important;
however, for the lookup, things must be normalized again. We
need at most one right shift or a number of left shifts */
if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
qi>>=1; qexp++;
qi>>=1; qexp++;
}else
while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
qi<<=1; qexp--;
qi<<=1; qexp--;
}
amp=vorbis_fromdBlook_i(ampi* /* n.4 */
vorbis_invsqlook_i(qi,qexp)-
/* m.8, m+n<=8 */
ampoffseti); /* 8.12[0] */
vorbis_invsqlook_i(qi,qexp)-
/* m.8, m+n<=8 */
ampoffseti); /* 8.12[0] */
curve[i]*=amp;
while(map[++i]==k)curve[i]*=amp;
}
}
#else
#else
/* old, nonoptimized but simple version for any poor sap who needs to
figure out what the hell this code does, or wants the other
@@ -245,7 +246,7 @@ void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
float amp,float ampoffset){
float amp,float ampoffset){
int i;
float wdel=M_PI/ln;
for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
@@ -289,7 +290,7 @@ static void cheby(float *g, int ord) {
for(i=2; i<= ord; i++) {
for(j=ord; j >= i; j--) {
g[j-2] -= g[j];
g[j] += g[j];
g[j] += g[j];
}
}
}
@@ -318,25 +319,25 @@ static int Laguerre_With_Deflation(float *a,int ord,float *r){
/* iterate a root */
while(1){
double p=defl[m],pp=0.f,ppp=0.f,denom;
/* eval the polynomial and its first two derivatives */
for(i=m;i>0;i--){
ppp = new*ppp + pp;
pp = new*pp + p;
p = new*p + defl[i-1];
ppp = new*ppp + pp;
pp = new*pp + p;
p = new*p + defl[i-1];
}
/* Laguerre's method */
denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
if(denom<0)
return(-1); /* complex root! The LPC generator handed us a bad filter */
return(-1); /* complex root! The LPC generator handed us a bad filter */
if(pp>0){
denom = pp + sqrt(denom);
if(denom<EPSILON)denom=EPSILON;
denom = pp + sqrt(denom);
if(denom<EPSILON)denom=EPSILON;
}else{
denom = pp - sqrt(denom);
if(denom>-(EPSILON))denom=-(EPSILON);
denom = pp - sqrt(denom);
if(denom>-(EPSILON))denom=-(EPSILON);
}
delta = m*p/denom;
@@ -344,14 +345,14 @@ static int Laguerre_With_Deflation(float *a,int ord,float *r){
if(delta<0.f)delta*=-1;
if(fabs(delta/new)<10e-12)break;
if(fabs(delta/new)<10e-12)break;
lastdelta=delta;
}
r[m-1]=new;
/* forward deflation */
for(i=m;i>0;i--)
defl[i-1]+=new*defl[i];
defl++;
@@ -368,27 +369,27 @@ static int Newton_Raphson(float *a,int ord,float *r){
double *root=alloca(ord*sizeof(*root));
for(i=0; i<ord;i++) root[i] = r[i];
while(error>1e-20){
error=0;
for(i=0; i<ord; i++) { /* Update each point. */
double pp=0.,delta;
double rooti=root[i];
double p=a[ord];
for(k=ord-1; k>= 0; k--) {
pp= pp* rooti + p;
p = p * rooti + a[k];
pp= pp* rooti + p;
p = p * rooti + a[k];
}
delta = p/pp;
root[i] -= delta;
error+= delta*delta;
}
if(count>40)return(-1);
count++;
}
@@ -418,12 +419,12 @@ int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
/* Compute the first half of K & R F1 & F2 polynomials. */
/* Compute half of the symmetric and antisymmetric polynomials. */
/* Remove the roots at +1 and -1. */
g1[g1_order] = 1.f;
for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
g2[g2_order] = 1.f;
for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
if(g1_order>g2_order){
for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
}else{