Rivendellaudio/ripcd/acu1p.cpp
Fred Gleason c3cc94143a 2019-07-23 Fred Gleason <fredg@paravelsystems.com>
* Fixed regressions that made serial device operation unreliable.
2019-07-23 14:19:06 -04:00

352 lines
7.7 KiB
C++

// acu1p.cpp
//
// Rivendell switcher driver for the Sine Systems ACU-1 (Prophet)
//
// (C) Copyright 2012-2019 Fred Gleason <fredg@paravelsystems.com>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License version 2 as
// published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
#include <stdlib.h>
#include <rdapplication.h>
#include <globals.h>
#include <acu1p.h>
Acu1p::Acu1p(RDMatrix *matrix,QObject *parent)
: Switcher(matrix,parent)
{
char str[9];
//
// Get Matrix Parameters
//
bt_matrix=matrix->matrix();
bt_inputs=matrix->inputs();
bt_outputs=matrix->outputs();
bt_gpis=matrix->gpis();
bt_gpos=matrix->gpos();
//
// Initialize the TTY Port
//
RDTty *tty=new RDTty(rda->station()->name(),matrix->port(RDMatrix::Primary));
bt_device=new RDTTYDevice();
if(tty->active()) {
bt_device->setName(tty->port());
bt_device->setSpeed(tty->baudRate());
bt_device->setWordLength(tty->dataBits());
bt_device->setParity(tty->parity());
bt_device->open(QIODevice::Unbuffered|QIODevice::ReadWrite);
}
bt_notify=new QSocketNotifier(bt_device->fileDescriptor(),QSocketNotifier::Read,this);
connect(bt_notify,SIGNAL(activated(int)),this,SLOT(readyReadData(int)));
delete tty;
//
// Initialize Relays
//
bt_gpo_mask=0;
str[0]=0xAA;
str[1]=ACU1P_UNIT_ID;
str[2]=0x38;
str[3]=bt_gpo_mask;
bt_device->write(str,4);
//
// Interval OneShots
//
bt_gpi_oneshot=new RDOneShot(this);
connect(bt_gpi_oneshot,SIGNAL(timeout(int)),this,SLOT(gpiOneshotData(int)));
bt_gpo_oneshot=new RDOneShot(this);
connect(bt_gpo_oneshot,SIGNAL(timeout(int)),this,SLOT(gpoOneshotData(int)));
//
// Poll Timer
//
bt_poll_timer=new QTimer(this);
connect(bt_poll_timer,SIGNAL(timeout()),this,SLOT(pollData()));
bt_poll_timer->start(ACU1P_POLL_INTERVAL);
}
Acu1p::~Acu1p()
{
delete bt_notify;
delete bt_device;
delete bt_gpi_oneshot;
delete bt_gpo_oneshot;
}
RDMatrix::Type Acu1p::type()
{
return RDMatrix::Acu1p;
}
unsigned Acu1p::gpiQuantity()
{
return bt_gpis;
}
unsigned Acu1p::gpoQuantity()
{
return bt_gpos;
}
bool Acu1p::primaryTtyActive()
{
return true;
}
bool Acu1p::secondaryTtyActive()
{
return false;
}
void Acu1p::processCommand(RDMacro *cmd)
{
char str[9];
switch(cmd->command()) {
case RDMacro::GO:
if((cmd->argQuantity()!=5)||
((cmd->arg(1).lower()!="i")&&
(cmd->arg(1).lower()!="o"))||
(cmd->arg(2).toInt()<1)||(cmd->arg(3).toInt()>bt_gpos)||
(cmd->arg(2).toInt()>bt_gpos)||
((cmd->arg(3).toInt()!=1)&&(cmd->arg(3).toInt()!=0)&&
(cmd->arg(1).lower()!="i"))||
((cmd->arg(3).toInt()!=1)&&(cmd->arg(3).toInt()!=0)&&
(cmd->arg(3).toInt()!=-1)&&(cmd->arg(1).lower()=="i"))||
(cmd->arg(4).toInt()<0)) {
cmd->acknowledge(false);
emit rmlEcho(cmd);
return;
}
if(cmd->arg(3).toInt()==0) { // Turn OFF
if(cmd->arg(4).toInt()==0) {
if(cmd->arg(1).lower()=="i") {
if(bt_gpi_state[cmd->arg(2).toInt()-1]) {
emit gpiChanged(bt_matrix,cmd->arg(2).toInt()-1,false);
bt_gpi_state[cmd->arg(2).toInt()-1]=false;
}
bt_gpi_mask[cmd->arg(2).toInt()-1]=true;
}
if(cmd->arg(1).lower()=="o") {
SetRelay(cmd->arg(2).toInt()-1,false);
emit gpoChanged(bt_matrix,cmd->arg(2).toInt()-1,false);
}
}
else {
if(cmd->echoRequested()) {
cmd->acknowledge(false);
emit rmlEcho(cmd);
}
return;
}
}
else {
if(cmd->arg(3).toInt()==-1) { // Clear input
bt_gpi_mask[cmd->arg(2).toInt()-1]=false;
bt_device->write("*0SPA",5);
}
else {
if(cmd->arg(4).toInt()==0) { // Turn ON
if(cmd->arg(1).lower()=="i") {
if(!bt_gpi_state[cmd->arg(2).toInt()-1]) {
emit gpiChanged(bt_matrix,cmd->arg(2).toInt()-1,true);
bt_gpi_state[cmd->arg(2).toInt()-1]=true;
}
bt_gpi_mask[cmd->arg(2).toInt()-1]=true;
}
if(cmd->arg(1).lower()=="o") {
SetRelay(cmd->arg(2).toInt()-1,true);
emit gpoChanged(bt_matrix,cmd->arg(2).toInt()-1,true);
}
}
else { // Pulse
if(cmd->arg(1).lower()=="i") {
if(!bt_gpi_state[cmd->arg(2).toInt()-1]) {
emit gpiChanged(bt_matrix,cmd->arg(2).toInt()-1,true);
bt_gpi_state[cmd->arg(2).toInt()-1]=true;
}
bt_gpi_mask[cmd->arg(2).toInt()-1]=true;
bt_gpi_oneshot->start(cmd->arg(2).toInt()-1,500);
}
if(cmd->arg(1).lower()=="o") {
PulseRelay(cmd->arg(2).toInt()-1);
emit gpoChanged(bt_matrix,cmd->arg(2).toInt()-1,true);
bt_gpo_oneshot->start(cmd->arg(2).toInt()-1,500);
}
}
}
}
if(cmd->echoRequested()) {
cmd->acknowledge(true);
emit rmlEcho(cmd);
}
break;
case RDMacro::SA:
if((cmd->arg(1).toInt()<=0)||(cmd->arg(1).toInt()>bt_inputs)||
(cmd->arg(2).toInt()!=1)) {
cmd->acknowledge(false);
emit rmlEcho(cmd);
return;
}
else {
str[0]=0xAA;
str[1]=ACU1P_UNIT_ID;
str[2]=0x31;
str[3]=0x01<<(cmd->arg(1).toInt()-1);
bt_device->write(str,4);
}
cmd->acknowledge(true);
emit rmlEcho(cmd);
break;
case RDMacro::SR:
if((cmd->arg(1).toInt()<=0)||(cmd->arg(1).toInt()>bt_inputs)||
(cmd->arg(2).toInt()!=1)) {
cmd->acknowledge(false);
emit rmlEcho(cmd);
return;
}
else {
str[0]=0xAA;
str[1]=ACU1P_UNIT_ID;
str[2]=0x32;
str[3]=0x01<<(cmd->arg(1).toInt()-1);
bt_device->write(str,4);
}
cmd->acknowledge(true);
emit rmlEcho(cmd);
break;
case RDMacro::ST:
if((cmd->arg(1).toInt()<0)||(cmd->arg(1).toInt()>bt_inputs)||
(cmd->arg(2).toInt()!=1)) {
cmd->acknowledge(false);
emit rmlEcho(cmd);
return;
}
str[0]=0xAA;
str[1]=ACU1P_UNIT_ID;
str[2]=0x51;
if(cmd->arg(1).toInt()==0) {
str[3]=0x00;
str[4]=0xFF;
}
else {
str[3]=0x01<<(cmd->arg(1).toInt()-1);
str[4]=~str[3];
}
bt_device->write(str,5);
cmd->acknowledge(true);
emit rmlEcho(cmd);
break;
default:
cmd->acknowledge(false);
emit rmlEcho(cmd);
break;
}
}
void Acu1p::pollData()
{
uint8_t data[]={0xAA,ACU1P_UNIT_ID,0x39};
bt_device->write((char *)data,3);
}
void Acu1p::readyReadData(int sock)
{
char data[255];
int n=0;
while((n=bt_device->read(data,255))>0) {
if(n==2) {
ProcessGpi(256*(0xFF&data[1])+(0xFF&data[0]));
}
}
}
void Acu1p::gpiOneshotData(int value)
{
}
void Acu1p::gpoOneshotData(int value)
{
emit gpoChanged(bt_matrix,value,false);
}
void Acu1p::ProcessGpi(uint16_t gpi_data)
{
for(int i=0;i<ACU1P_GPIO_PINS;i++) {
uint16_t mask=1<<i;
if(((gpi_data&mask)!=0)&&(!bt_gpi_mask[i])) {
emit gpiChanged(bt_matrix,i,true);
bt_gpi_mask[i]=true;
}
if(((gpi_data&mask)==0)&&bt_gpi_mask[i]) {
emit gpiChanged(bt_matrix,i,false);
bt_gpi_mask[i]=false;
}
}
}
void Acu1p::SetRelay(int gpo,bool state)
{
char str[9];
uint8_t mask=1<<gpo;
if(state) {
bt_gpo_mask=bt_gpo_mask|mask;
}
else {
bt_gpo_mask=bt_gpo_mask&(~mask);
}
str[0]=0xAA;
str[1]=ACU1P_UNIT_ID;
str[2]=0x38;
str[3]=bt_gpo_mask;
bt_device->write(str,4);
}
void Acu1p::PulseRelay(int gpo)
{
char str[9];
uint8_t mask=1<<gpo;
str[0]=0xAA;
str[1]=ACU1P_UNIT_ID;
str[2]=0x52;
str[3]=mask;
bt_device->write(str,4);
}